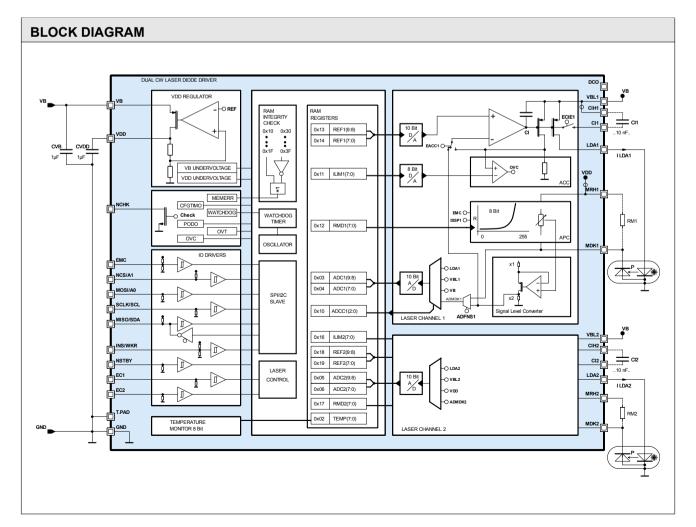
DUAL CW P-TYPE LASER DIODE DRIVER Preliminary


FEATURES

- Dual channel CW operation with up to 750 mA per channel
- Up to 1500 mA with both channels combined
- ♦ 2.8 V to 11 V power supply
- Operation with or without µController
- Individual enable input per channel
- Individual laser power supply per channel
- ♦ Control loop accuracy better than 1%
- Internal programmable logarithmic monitor resistor
- Operating point setup with 10 bit logarithmic resolution
- ACC or APC mode individually configurable for each channel
- ♦ A/D converters for analog monitoring
- Serial programming interface (SPI or I²C compliant)
- Configuration content verification and validation
- Programmable laser overcurrent protection
- Optimized for P-type laser diodes
- Low drop linear regulator for 3.3 V
- Low current standby mode
- ♦ Temperature monitor
- ♦ Temperature range -40 ... 85 °C

- Laser diode and LED modules
- CW P-type laser diode drivers
- Embedded laser diode controllers
- Structured-light 3D illuminations
- Multiple laser diode control
- Optical amplification/pumping
- Safety related laser controllers

Rev B1, Page 1/51

Haus

Rev B1, Page 2/51

Haus

DESCRIPTION

Dual CW laser diode driver iC-HTP can operate two individual laser diodes with up to 750 mA laser current depending on the heat dissipation. Each channel can be enabled independently. The laser diode driver can be controlled by an external microcontroller (MCU mode) or operate stand alone with pin/resistor configuration (iC-WK mode). In MCU mode, both channels can be combined for driving up to 1500 mA.

Each channel can be operated individually either in automatic current control (ACC) or automatic power control (APC). All parameters including the internal reference voltages are set via serial communication (I²C or SPI). A 10 bit resolution D/A converter with logarithmic characteristic is used for setting the operating point. This allows an operating point resolution better than 1%.

In APC control, the monitor diode photocurrent is used to track the optically emitted power of the laser diode. The feedback for the laser diode driver is the voltage of the photocurrent at a monitor resistor. An 8 bit internal programmable logarithmic monitor resistor (PLR) or an external monitor resistor can be selected for closing the control loop. The PLR ranges from 100Ω to $500 \text{ k}\Omega$ with a step width less than 5%.

In ACC control, the laser diode current can be set directly. Current ranges are selectable.

iC-HTP allows disabling the laser channels when an overcurrent threshold has been exceeded. The overcurrent threshold of each channel has 2 ranges and is programmable through an 8 bit linear D/A converter. The temperature monitor measures the internal chip temperature. iC-HTP disables the laser channels when overtemperature is detected.

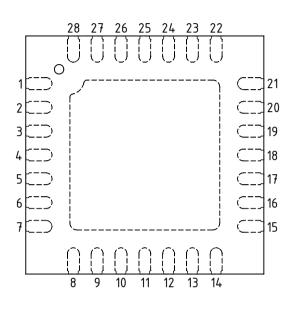
A variety of voltages can be measured with a 10 bit A/D converter. The following voltages can be measured:

- V(LDAx)
- V(VBLx)
- V(VDD)
- V(VB)
- V(PLRx)
- V(MDKx)
- V(RACCx)

The DCO current output pin can control an external DC/DC converter. Controlling the DC/DC output voltage can optimize the power dissipation of the whole system e.g. to extend battery life or reduce total power consumption.

iC-HTP in standby mode has a very low current consumption (< 10 μ A) and does retain its configuration.

The device features for safe operation:


- · Configuration verification
- · Tri-state configuration pins
- · Write protection in operating mode
- Safe default/startup state
- Software parameter controllable channel disabling
- Hardware pin controllable channel ensabling
- · Configuration timeout for access monitoring

Rev B1, Page 3/51

PACKAGING INFORMATION QFN28 5 mm x 5 mm to JEDEC

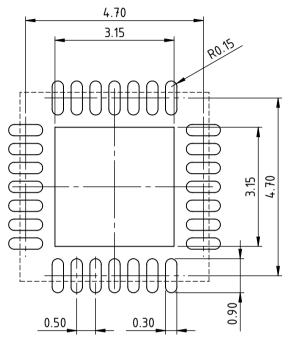
PIN CONFIGURATION QFN28 5 mm x 5 mm (topview)

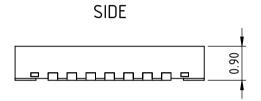
PIN FUNCTIONS

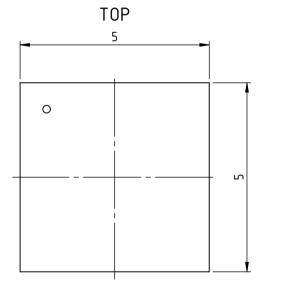
No. Name Function

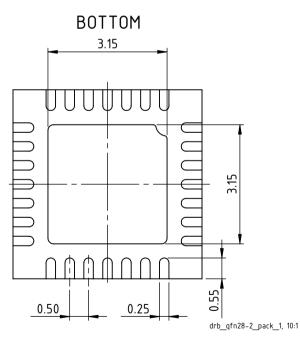
NO.	Name	Function
1	LDA1	Laser Diode Anode for channel 1
	LDA1	Laser Diode Anode for channel 1
	VBL1	Laser Power Supply for channel 1
	CI1	Integration Capacitor for channel 1
	CIH1	
5	CIHI	Integration Capacitor for channel 1, high side
6	MDK1	Monitor Diode Cathode
		for channel 1
7	MRH1	Monitor Resistor for channel 1, high side
8	EMC	Enable Microcontroller input
	SCLK/SCL	
	MISO/SDA	
	MOSI/A0	SPI Master III Slave OOT / I-C Data SPI Master Out Slave In /
11	WOSI/AU	
40		I ² C Address bit 0
12	NCS/A1	Chip Select, active low /
40	504	I ² C Address bit 1
	EC1	Enable Channel 1 input
	EC2	Enable Channel 2 input
15	MRH2	Monitor Resistor for channel 2, high side
16	MDK2	Monitor Diode Cathode
10		for channel 2
17	CIH2	Integration Capacitor for channel 2,
		high side
18	CI2	Integration Capacitor for channel 2
19	VBL2	Laser Power Supply for channel 2
20	LDA2	Laser Diode Anode for channel 2
21	LDA2	Laser Diode Anode for channel 2
22	GND	Ground
23	DCO	Digital Current Output
24	INS/WKR	I ² C or SPI selection input /
		Reference voltage selection in
		iC-WK mode
25	VDD	3.3 V output supply
	VB	Power supply
	NCHK	Error output, active low
	NSTBY	Standby input, active low
TP		Thermal Pad (GND)

The Thermal Pad is to be connected to a Ground Plane (GND, AGND1...2) on the PCB. Only pin 1 marking on top or bottom defines the package orientation (@ HTP label and coding is subject to change).


Rev B1, Page 4/51


PACKAGE DIMENSIONS QFN28-5x5


All dimensions given in mm.


This package falls within JEDEC MO-220-VHHD-1.

RECOMMENDED PCB-FOOTPRINT

Rev B1, Page 5/51

Haus

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply permissible operating conditions; functional operation is not guaranteed. Exceeding these ratings may damage the device.

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	VB	Voltage at VB		-0.3	11	V
G002	I(VB)	Current in VB		-20	50	mA
G003	VDD	Voltage at VDD		-0.3	5.5	V
G004	I(VDD)	Current in VDD		-20	1	mA
G005	V()	Voltage at EC1, EC2, MDK1, MDK2, EMC, SCLK/SCL, MISO/SDA, MOSI/A0 NCS/A1, DCO, INS/WKR, NCHK	,	-0.3	5.5	V
G006	1()	Current in CI1, CI2, CIH1, CIH2, EC1, EC2, MDK1, MDK2, EMC, SCLK/SCL, MISO/SDA, MOSI/A0, NCS/A1, DCO, INS/WKR, NCHK, NSTBY, CIL1, CIL2, MRH1, MRH2		-20	20	mA
G007	V()	Voltage at CI1, CI2, CIH1, CIH2, VBL1, VBL2, LDA1, LDA2, NSTBY		-0.3	11	V
G008	I(AGND)	Current in VBL1, VBL2	DC current	-1	900	mA
G009	I(LDK)	Current in LDA1, LDA2	DC current	-900	20	mA
G010	Vd()	ESD Susceptibility at all pins	HBM 100 pF discharged through $1.5 k\Omega$		2	kV
G011	Tj	Operating Junction Temperature		-40	125	°C
G012	Ts	Storage Temperature Range		-40	150	°C

THERMAL DATA

Operating Conditions: VB = 2.8 ... 11 V (referenced to GND)

ltem	Symbol	mbol Parameter Conditions					Unit
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range		-40		85	°C
T02	Rthja	Thermal Resistance Chip/Ambient	Mounted on PCB		25		K/W
T03	RthjTP	Thermal Resistance Chip/Thermal Pad			4		K/W

Rev B1, Page 6/51

CHaus

ELECTRICAL CHARACTERISTICS

ltem	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
	Device					- 4	
		ndividual application using FMEA n	conditions (with reference to independent volta nethods	ge supplie	es, tor in	stance) a	re to be
001	VB	Permissible Supply Voltage	Referenced to GND	2.8		11	V
002	I(VB)	Standby Current at VB	$V(NSTBY) \le 0.4 V$	2.0		10	μA
	,						P ., (
003	I(VB)	Supply Current at VB	No load, EC1, EC2, NSTBY = hi			5	mA
004	V(VB)off	Turn-off threshold	Decreasing VB	1.4		2.6	V
005	V(VBLx)off	Turn-off threshold	Decreasing VBLx	1.4		2.6	V
006	VBLxequal	Detection for VBL1 not equal to VBL2	Merge mode enabled, VBL1-VBL2	0.5		1.3	V
007	V(VDD)on	Turn-on threshold	Increasing VDD	1.4		2.2	V
008	V(VDD)off	Turn-off threshold	Decreasing VDD	1.2		2.2	V
009	V(VDD)Hys	Power-on hysteresis		20		250	mV
010	V(VB)INITR	RAM memory reset during Stand-By	NSTBY = lo	0.85		1.4	V
011	Rgnd()	Resistor to VDD at MRH1, MRH2				20	Ω
012	Ragnd()	Resistor to VBLx at CIHx				20	Ω
013	Vc()lo	Clamp Voltage Io at VB, VDD, NCHK, EMC, NCS/A1, MISO/SDA, MOSI/A0, SCLK/SCL, INS/WKR, NSTBY, EC1, EC2, DCO, LDA1, LDA2, CI1, CIH1, CI2, CIH2, AGND1, AGND2, MDK1, MDK2	I() = -10 mA	-1.6		-0.3	V
Laser	Driver LDA	k, Clx, MDKx				11	
101		Saturation Voltage Io at LDA	CRNGx = 00 I(LDAx) = -750 mA V()= V(VBLx) - V(LDAx)			0.7	V
102	V(LDASAT)	LDAx saturation detection threshold	RLDASx = 00 RLDASx = 01 RLDASx = 10 RLDASx = 11	0.4 0.6 0.9 1.1	0.6 0.8 1.1 1.3	0.9 1.1 1.2 1.5	V V V V
103	ldc(LDA)	Permissible DC Current at LDAx	CRNGx = 00 CRNGx = 01 CRNGx = 10 CRNGx = 11	-750 -100 -25 -9			mA mA mA mA
104	lleak(LDA)	LDAx leakage current	V(LDAx) = 0 V	-10			μA
105	C(CI)	Possible capacitor at CI1, CI2	ECIE = 0, EMC = hi	0			μF
106	I(CI)	Charge Current at CI1, CI2	V(CI) = 0 V, EC1, EC2 = hi, ECIEx = 1 COMP = 111	-150		-15	μA
107	I(LDA)max	Laser overcurrent shutdown threshold	CRNGx = 00 EACCx = 0 V(LDA) = V(VBLx)-0.7 V 1.5 V ILIMx(7:0) = 0x00, RACCx = 0 ILIMx(7:0) = 0xFF, RACCx = 0 ILIMx(7:0) = 0x00, RACCx = 1 ILIMx(7:0) = 0xFF, RACCx = 1	-25 -2266 -3.2 -284		0 -900 0 -150	mA mA mA
108	Δ I(LDA)	Shutdown threshold resolution	CRNGx = 00, ILIMx(7:0) = 0x00 to 0xFF RACCx = 0 RACCx = 1	-5 -0.625	-4 -0.5	-3 -0.375	mA mA
109	tovc	Time to overcurrent shutdown	Laser current decreased 10%	1		5	μs
110	V(MDK)	Voltage at MDK1, MDK2	Closed control loop EC1, EC2 = hi EMC = lo, INS/WKR = lo EMC = lo, INS/WKR = hi	110 220	125 250	145 280	mV mV
111	Ten	Time to laser enabled	NSTBY lo \rightarrow hi, no load at VDD, V(VDD) 0 to 90 %, CVDD = 1 μ F, EMC = lo			1.3	ms

Rev B1, Page 7/51

Haus

ELECTRICAL CHARACTERISTICS

Operating Conditions: VB = 2.8 ... 11 V (referenced to GND), Tj = -40 ... 125 °C unless otherwise stated

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
112	Tci	Time to light	NSTBY = hi, ECIE = 0, COMP = 010, light off to 80 % target value			300	μs
113	Tcio	Time to target light	Light from 80 % to 99 % target value			4700	μs
114	ldc(LDA)	LDAx ACC mode current	EC1, EC2, EMC = hi, EACCx = 1, V(LDAx) = V(VBLx)-0.7 V 1.5 V, CRNGx = 00 REFx(9:0) = 0x000, RACCx = 0 REFx(9:0) = 0x3FF, RACCx = 0 REFx(9:0) = 0x000, RACCx = 1 REFx(9:0) = 0x3FF, RACCx = 1	-200 -2200 -25 -230	-130 -1570 -15 -160	-70 -940 -9 -90	mA mA mA mA
115	ТК	Temperature coefficient ACC mode		-1500	-500		ppm/K
116	IdcLSB	REFx(9:0) step current at LDA in ACC mode	EC1, EC2, EMC = hi, EACCx = 1, V(LDAx) = V(VBLx)-0.7 V 1.5 V, CRNGx = 00 RACCx = 0; RACCx = 1;	0.7 0.06	1.35 0.15	2 0.25	mA mA
Progra	ammable Re	esistor					
201	Rmdk	Resistor at MDKx pin	RMDx(7:0) = 0xF0 0xFF, DISPx = 0 RMDx(7:0) = 0x00 0x0F, DISPx = 0	350 0.154	500 0.220	650 0.286	kΩ kΩ
202	Tk	Temperature coefficient		-1500	-500	0	ppm/K
203	ΔR	Percental resistor increment	$\Delta R = \frac{R(n+1)-R(n)}{R(n)}$	1	3.3	7	%
204	Ileak(MDK)	MDKx leakage current	DISPx = 1	-1		1	μA
	onverter						
301	R(DAC)	D/A converter resolution				10	bit
302	ΔV	Percental voltage increments	$\Delta V = \frac{V(n+1) - V(n)}{V(n)}$	0.05	0.235	1	%
303	V(DAC)	D/A converter	REFx(9:0) = 0x000 lowest value REFx(9:0) = 0x3FF highest value	0.09 1.00	0.10 1.10	0.12 1.25	V V
304	DATK	DAC Temperature Accuracy	REFx(9:0) = 0x3FF highest value	-2.5		2.5	%
Check	Output NC	нк					
401	Vs()lo	Saturation Voltage lo at NCHK	I(NCHK) = 1.0 mA			0.4	V
402	lsc()lo	Short Circuit Current lo at NCHK	V(NCHK) = 0.4 3.3 V	9		33	mA
403	llk()	Leakage Current at NCHK	NCHK = 1; V(NCHK) = 0 5.5 V	-10		10	μA
Series	Regulator	Output VDD					
501	V(VDD)	Regulated output voltage	VB = 3.7 … 8 V, I(VDD) = -10 … 0 mA NSTBY = hi	3		3.5	V
502	V(VB,VDD)	Voltage Drop between VB and VDD	VDD unregulated, I(VDD) = -10 0 mA NSTBY = hi		100	400	mV
503	C(VOUT)	Capacitor at VDD	Ri(C) < 1 Ω	1		3.3	μF
504	Tvdd	Settling time VDD	NSTBY Io \rightarrow hi, no load at VDD, V(VDD) 0 to 90 % CVDD = 1 μ F			1	ms
Digita	l inputs						
601	Vt()hi	Input Threshold Voltage hi at NCS/A1, MISO/SDA, MOSI/A0, SCLK/SCL, NSTBY, EC1, EC2				2	V
602	Vt()lo	Input Threshold Voltage Io at NCS/A1, MISO/SDA, MOSI/A0, SCLK/SCL, NSTBY, EC1, EC2	VB > 3 V VB = 2.8 V	0.7 0.6			V V
603	Vt()hys	Hysteresis at NCS/A1, MISO/SDA, MOSI/A0, SCLK/SCL, NSTBY, EC1, EC2	Vt()hys = Vt()hi - Vt()lo	100			mV
604	lpd()	Pull-Down Current at MOSI/A0, EC1, EC2	V() = 0.4 V VDD	1		50	μA

IC-HTP DUAL CW P-TYPE LASER DIODE DRIVER Preliminary

Rev B1, Page 8/51

Haus

ELECTRICAL CHARACTERISTICS

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
605	lpd()	Pull-Down Current at NSTBY	V() = 0.4 V VB	1	тур.	50	μA
606	Rpu()	Pull-Up Resistor at SCLK/SCL,	V() = 0.4 V VB	80	150	260	μA kΩ
000	rtpu()	NCS/A1		00	150	200	N32
607	Rpu()	Pull-Up Resistor at MISO/SDA	EMC = hi, INS/WKR = lo EMC = hi, INS/WKR = hi	8 53	20 100	50 174	kΩ kΩ
608	Er()	Safe enable threshold voltage at EMC, INS/WKR	Rising Falling	52 30	54 32	56 34	% VDD % VDD
609	Voc()	Open Circuit Voltage at EMC, INS/WKR		39	41	43	% VDD
610	Ri()	Internal Resistance at EMC, INS/WKR		170	250	330	kΩ
611	lsc()lo	Short Circuit current lo at MISO/SDA	INS/WKR = Io, V(MISO/SDA) = 5.5 V	-40		-4	mA
612	Vs()lo	Saturation Voltage lo at MISO/SDA	INS/WKR = Io, I(MISO/SDA) = 2 mA			0.4	V
A/D C	onverter		1				
701	Ton	Converter initialization time	ADCCx(2) changes from 0 to 1 LDAx, VDD or VB measurements			500	μs
702	Tconv	Conversion time				140	μs
703	R(ADC)	A/D Converter Resolution				10	bit
704	RAC	Relative Accuracy		-1		+1	LSB
705	VZS()	Zero Scale Voltage	ADCx(9:0) = 000h		0		V
706	VFS()	Full Scale Voltage	ADCx(9:0) = 3FFh	1.0	1.1	1.2	V
707	MDKM	MDKx Measurement	MDKx = 0.5 V, ADCCx(2:0) = 100, ADFNSx = 1	372	465	558	LSB
708	VDDM	VDD Measurement	VDD = 3.3 V, ADCC2(2:0) = 101	312	390	468	LSB
709	VBM	VB Measurement	VB = 11 V, ADCC1(2:0) = 101	744	930	1023	LSB
710	VBLM	VBLx Measurement	VBLx = 11 V, ADCCx(2:0) = 110	744	930	1023	LSB
711	LDAM	LDAx Measurement	LDAx = 11 V, ADCCx(2:0) = 111	744	930	1023	LSB
Overt	emperature		, (-)				
B01	Toff	Overtemperature Shutdown	Rising temperature	130		170	°C
B02	Ton	Overtemperature Release	Falling temperature	120		160	°C
B03	Thys	Hysteresis	Toff – Ton	3			°C
	erature Mor						
C01	Trange	Temperature Measurement Range		-40		125	°C
C02	Tresol	Temperature Measurement Reso- lution			1		°C
C03	Reading	Temperature Value Ranges	Tj = 125 °C Tj = -40 °C	160 0		190 15	digits digits
DCO	Output		1				
D01	lsc()hi	DCO Output Current	V(VDD) = 33.5 V, V(DCO) < 1.4 V, RDCO = 0x3F	-175	-130	-85	μA
D02	lleak	Leakage Current at DCO	RDCO = 0x00 or NSTBY = Io, V(DCO) = 0 5.5 V	-1		1	μA
D03	I(DCO)LSE	I(DCO) Resolution	V(DCO) < 1.4 V	1.3	2	2.7	μA
Oscil	. ,	-					
E01	Fosc	Oscillator Frequency	NSTBY = hi	100	200	400	kHz
E02	T(cfgtimo)	Configuration Mode Timeout	MODE(1:0) = 10	40	82	164	ms
E03	tWDT	Watchdog Timeout	NSTBY = hi	20		120	μs

IC-HTP DUAL CW P-TYPE LASER DIODE DRIVER Preliminory

Rev B1, Page 9/51

Haus

OPERATING REQUIREMENTS: SPI and I²C Interface

Opera	ting Conditi	ons: VB = 2.8 … 11 V , Tj = -40 … 125 °C				
Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
SPI / I ²	² C Interface	Timing				
1001	tsCCL	Setup Time: NCS/A1 hi \rightarrow lo before SCLK lo \rightarrow hi	INS/WKR = Io	20		ns
1002	tsDCL	Setup Time: MOSI/A0 stable before SCLK/SCL Io \rightarrow hi	INS/WKR = lo	20		ns
1003	thDCL	Hold Time: MOSI/A0 stable after SCLK/SCL Io \rightarrow hi	INS/WKR = Io	20		ns
1004	tCLH	Signal Duration SCLK/SCL hi	INS/WKR = Io	50		ns
1005	tCLI	Signal Duration SCLK/SCL lo	INS/WKR = Io	50		ns
1006	thCLC	Hold Time: NCS/A1 lo after SCLK/SCL hi \rightarrow lo	INS/WKR = Io	20		ns
1007	tCSH	Signal Duration NCS/A1 hi	INS/WKR = Io	50		ns
1008	tpCLD	Propagation Delay: MISO/SDA stable after SCLK/SCL hi \rightarrow lo	INS/WKR = Io, V(VDD) > 3 V, C _{load} = 10 pF, no external pull-up	0	30	ns
1009	tHIZ	MISO to HIZ delay	INS/WKR = Io, HIZ = high impedance state	0	25	ns
1010	f(SCLK)	SPI clock frequency			10	MHz
1011	f(SCL)	I ² C clock frequency			400	kHz

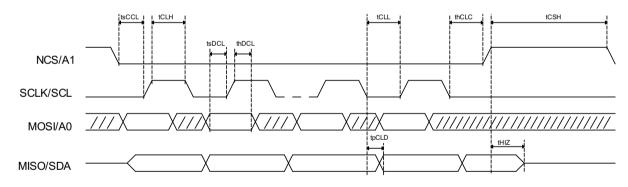


Figure 1: SPI interface timing

Rev B1, Page 10/51

laus

OPERATING MODES AND STANDBY

iC-HTP has two operating modes:

iC-WK mode

iC-HTP operates as an Automatic Power Control (APC) laser controller, similar to iC-Haus iC-WKP. iC-WKP mode is set by pin configuration and external resistor. Pin EMC is set to lo and pin INS/WKR selects the reference voltage. Floating pins EMC and INS/WKR are detected as faulty configuration and signaled at NCHK.

MCU mode

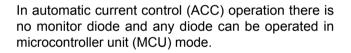
In microcontroller unit (MCU) mode, iC-HTP features two control modes: automatic power control (APC) and automatic current control (ACC). Pin EMC is set to hi and pin INS/WKR selects the serial communication interface protocol. Selection of the communication protocol is achieved through pin INS/WKR: INS/WKR = hi for I²C, INS/WKR = Io for SPI. Floating pins EMC and INS/WKR are detected as faulty configuration and signaled at NCHK.

Standby

iC-HTP in standby has a very low current consumption (<10 μ A) and does retain its configuration. Standby will not reset the internal RAM.

In order to exit standby, pin NSTBY must be set to hi (e.g. VB). VDD is switched off in standby and can not be used to exit standby.

CIx, CIHx, VB, VBLx, NSTBY and LDAx withstand voltages up to 11 V, whereas the remaining input pins operate up to 5.5 V and do have high impedance at standby.


Information on timing after waking up from standby can be found on page 40.

LASER DIODE/LED TYPES AND OPERATION MODES

For APC operation a monitor diode is required. This operation is possible in microcontroller unit (MCU) mode and in the iC-WK mode.

iC-HTP can operate in APC one type of laser diodes/LEDs with monitor diodes:

• P-Type laser diodes

All operations are possible with laser diodes (LDs) or light emitting diodes (LEDs). The following text does not differ between laser diodes (LDs) and light emitting diodes (LEDs).

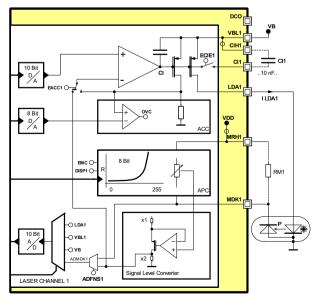


Figure 2: iC-HTP with P-type laser diode

Rev B1, Page 11/51

Haus

iC-WK MODE

Setting pin EMC = Io configures iC-HTP for iC-WK mode. EMC pin must be set using a pull-down resistor or directly short-circuited to GND pin.

In iC-WK mode both channels operate in APC mode. The internal programmable logarithmic monitor resistors are disabled, therefore connection of external resistors at pins MDKx is required.

The APC reference can be set to two different values by means of pin INS/WKR, as it is explained in table 5, and the overcurrent threshold is set to its maximum value of 750 mA (cf. *Electrical Characteristics No. 107*). In case of overcurrent, the respective channel is disabled. For re-enabling the channel, the corresponding ECx pin must be set lo and then back hi.

Reference Voltage in iC-WK mode				
INS/WKR Reference Voltage				
Lo	VDD-0.125 V			
Hi	VDD-0.250 V			

Table 5: Reference selection (cf. *Electrical Characteristics No. 110*)

External CI capacitors must be added in this operation mode at pins CIx and CIHx. Figure 3 shows an example in iC-WK mode using an P-type laser diode, where VDD-0.250 V reference is selected. Figure 4 presents the same configuration with an P-type laser diode and reference VDD-0.125 V.

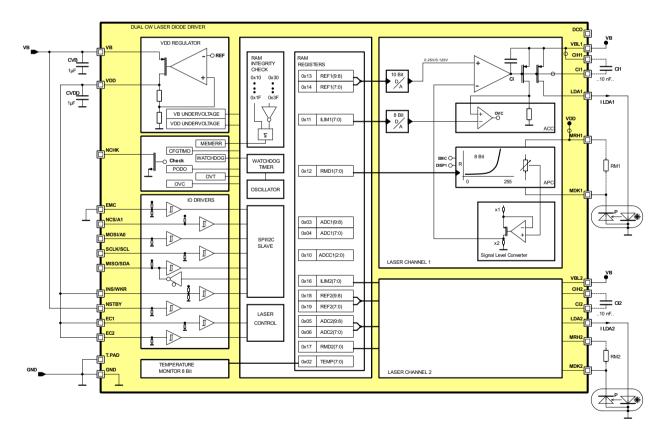


Figure 3: iC-HTP in iC-WK mode with P-type laser diode and reference VDD-0.250V

DUAL CW P-TYPE LASER DIODE DRIVER Preliminary Haus

Rev B1, Page 12/51

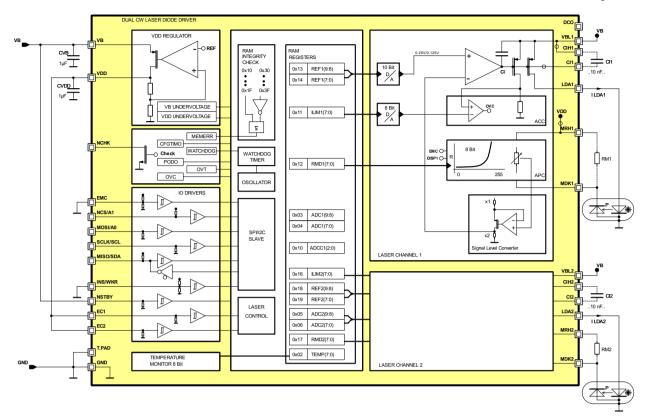


Figure 4: iC-HTP in iC-WK mode with P-type laser diode and reference VDD-0.125V

In the configuration from figures 3 and 4 pin NSTBY is connected to VB. This is required to force iC-HTP leaving standby mode and starting normal operation, as the pin includes an internal pull-down resistor.

Laser channel enabling

Setting pins EC1, EC2 to hi enables the corresponding channels. In order to ensure safe operation of iC-HTP, several events automatically disable both output channels:

- · Pins INS/WKR or EMC left unconnected (IN-SOPEN, EMCOPEN), iC-HTP enters error mode and the laser channels cannot be enabled.
- · Supply power-down either at VB (PDOVBLx) or VDD (PDOVDD), the laser channels are unconditionally disabled during the power down event.
- Overcurrent (OVC) or overtemperature (OVT). laser channels are switched off. Cycling pins EC1, EC2 or a power-up is required to switch on the laser again.

MICROCONTROLLER MODE

Setting pin EMC to hi configures iC-HTP for microcontroller mode (MCU mode). EMC pin must be set using a pull-up resistor or directly short-circuited to VDD pin. Several parameters can be configured through a microcontroller via I^2C or SPI communication. More information about the serial communication interface can be found on page 26.

The configuration of the internal parameters of iC-HTP must be done in configuration mode. In this mode, the configuration memory can be written and read back without changing the previous configuration state of iC-HTP. Once the configuration is considered as valid, iC-HTP can be switched to operation mode. These two modes are configured by the MODE register. The time elapsed in configuration may not exceed 40 ms. If this timeout is exceeded, both channels will be switched off. More information on page 38.

Each individual channel can be enabled by setting pin ECx to hi. Setting register bits DISCx to 1 disables the corresponding channel. If either pin ECx is lo or register bits DISCx is 1, the corresponding channel is disabled.

DISC1	Addr. 0x10; bit 3	R/W 1		
0	Channel 1 can be enabled by pin EC1			
1	Channel 1 cannot be enabled by pin EC1			

Table 6: Disable channel 1

DISC2	Addr. 0x15; bit 3	R/W 1		
0	Channel 2 can be enabled by pin EC2			
1	Channel 2 cannot be enabled by pin EC2			

Table 7: Disable channel 2

Different voltages can be measured using a 10 bit A/D converter with two resolutions. The following internal voltages can be measured:

- V(LDAx) up to 11 V with 11.81 mV resolution
- V(VDD) up to 8 V with 8.6 mV resolution
- V(VB) up to 11 V with 11.81 mV resolution
- V(VBLx) up to 11 V with 11.81 mV resolution
- V(MDKx) up to 1.1 V with 1.075 mV resolution
- V(PLRx) up to 1.1 V with 1.075 mV resolution
- V(RACC) up to 1.1 V with 1.075 mV resolution

The register bits ADCCx select the signal measured with the 10 bit A/D converter.

ADCC1(2:0)	Addr. 0x10;	bit 7:5	R/W 000
0xx	Channel 1 ADC disa	abled	
100	Channel 1 ADC sou CMES1 = 0	rced by V(MDK1), ADFNS1 = 1,
100	Channel 1 ADC sou CMES1 = 0	rced by V(PLR1), ADFNS1 = 0,
100	Channel 1 ADC sou CMES1 = 1	rced by AC	CC current sensor,
101	Channel 1 ADC sou	rced by V(VB)
110	Channel 1 ADC sou	rced by V(VBL1)
111	Channel 1 ADC sou	rced by V(LDA1)

Table 8: ADC channel 1 source selection

ADCC2(2:0)	Addr. 0x15;	bit 7:5	R/W 000	
0xx	Channel 2 ADC disa	abled		
100	Channel 2 ADC sou CMES2 = 0	rced by V(M	IDK2), ADFNS2 = 1,	
100	Channel 2 ADC sourced by V(PLR2), ADFNS2 = 0, CMES2 = 0			
100	Channel 2 ADC sou CMES2 = 1	rced by ACC	C current sensor,	
101	Channel 2 ADC sou	rced by V(V	DD)	
110	Channel 2 ADC sou	rced by V(V	BL2)	
111	Channel 2 ADC sou	rced by V(L	DA2)	

Table 9: ADC channel 2 source selection

With ADCCx(2:0) = 100, the signal to the A/D converter is selected by register bit ADFNSx. With ADFNSx = 0 the measuring point to the A/D converter is the internal sense node of the internal programmable logarithmic monitor resistor (PLR). With ADFNSx = 1 the sensing point is connected directly to MDKx pin. Note that in this case, only voltages from 0 to 1.1 V can be monitored for the A/D converter. With the CMESx bit, the ADC can be used for laser current measurement in ACC mode. For this measurement, ADCCx register must be set to 100. As shown in figure 7, a fraction of the current delivered by the driver to the laser is mirrored to a resistor. The voltage drop at this resistor is sourced to the ADC. For a more detailed explanation of the current measurement, please refer to the ADC chapter.

ADFNS1	Addr. 0x1A; bit 2 R/W 0
0	ADC measurement PLR1 after level shifting (sense)
1	ADC measurement MDK1 pad (force)

Rev B1, Page 13/51

laus

Two different control modes can be configured independent for each channel: automatic power control (APC) and automatic current control (ACC). In both modes a 10 bit logarithmic D/A converter sets the reference

voltage and an 8 bit programmable D/A converter con-

figures the overcurrent threshold.

ADFNS2	Addr. 0x1A; bit 6	R/W 0
0	ADC measurement PLR2 after level shifting (sense)	
1	ADC measurement MDK2 pad (force)	

Table 11: ADC channel 2 force/sense selection

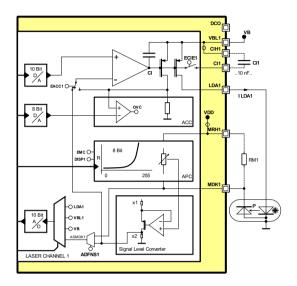


Figure 5: Channel 1 schematic

APC mode

In APC mode the laser power is controlled. The monitor diode current (Imon) is used as feedback in the laser power control loop. APC mode is selected by setting EACCx register bit to 0.

EACC1	Addr. 0x10; bit 0	R/W 0
0	APC mode enabled for channel 1 (regulation)	light power
1	ACC mode enabled for channel 1 (laser current regulation)	

Table 12: Enable APC/ACC channel 1

EACC2	Addr. 0x15; bit 0	R/W 0
0	APC mode enabled for channel 2 (ligh regulation)	t power
1	ACC mode enabled for channel 2 (lase regulation)	er current

Table 13: Enable APC/ACC channel 2

An example of APC with default configuration is shown in figure 6.

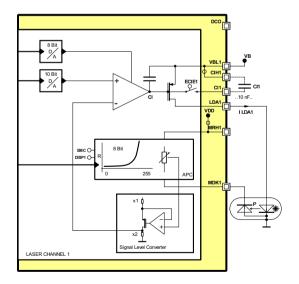


Figure 6: APC mode simplified

An internal 8 bit programmable logarithmic monitor resistor (PLR) can be used in APC mode. In APC mode it is also possible to use an external monitor resistor connected to pin MDKx. If the register bit DISPx is 0, the PLR is present. If DISPx is 1, the PLR is disabled and an external monitor resistor must be used.

DISP1	Addr. 0x10; bit 2	R/W 0
0	PLR enabled for channel 1	
1	PLR disabled for channel 1	

Table 14: Disable PLR channel 1

DISP2	Addr. 0x15; bit 2	R/W 0
0	PLR enabled for channel 2	
1	PLR disabled for channel 2	

Table 15: Disable PLR channel 2

Both programmable logarithmic monitor resistors (PLR) feature a wide logarithmic resistor range from 100Ω to 407 k Ω , in steps of typically 3.3%. This covers a wide range of monitor currents. More information about the PLR can be found on page 28.

For fine-tuning the optical power, the reference voltage can be set with a 10 bit logarithmic D/A converter, which is configurable through register REFx. This converter has a voltage range that goes typically from 0.1 V to 1.1 V, allowing an operation resolution of typically 0.235%. More information on the logarithmic D/A converter can be found on page 29.

Inside the regulation loop there is the signal level converter. This block is in charge of converting the values coming from the PLRx which are referenced to MRHx and reference them to GND. This is necessary because the logarithmic D/A is referenced to GND. In addition this signal level converter adds a 1:2 ratio between the voltage regulated at PLRx and the one regulated at the logarithmic D/A converter i.e. 1.1 V regulated at the logarithmic D/A side are 0.55 V regulated at the PLRx side.

For calculating the minimum value of the monitor current, Imon, Vref(0x00, max value) (cf. Electrical Characteristics No. 303) and Rmda(RMDx = 0xFF, min value) (cf. Electrical Characteristics No. 201) are used. Also the 1:2 ratio between PLRx regulation voltage and Vref must be applied.

 $Imon(min) = \frac{Vref(0x000,max)}{2 \cdot Rmda(RMDx = 0xFF,min)} = \frac{0.11}{2 \cdot 350000} = 0.16 \ \text{tA}$

It is not recommended to configure iC-HTP to have such small Imon values, otherwise the leakage current at MDKx may have an influence (cf. Electrical Characteristics No. 204), especially at high temperatures. To avoid this, Imon should be much greater than the leakage current.

For calculating the maximum value of Imon, Vref(0x3FF, min value) (cf. Electrical Characteristics No. 303) and Rmda(RMDx = 0x00, max vaule) (cf. Electrical CharRev B1, Page 15/51

acteristics No. 201) are used. Also the 1:2 ratio between PLRx regulation voltage and Vref must be applied. Since only the 4 MSB from PLR can be accessed at pin MDKx, the following formula needs to be used for calculating Rmda(RMDx = 0x00, max value):

$$Rmd = Rmd_0(1 + \frac{\Delta Rmd(\%)}{100})^{n+1}$$
, n from 0 to 255

 $Rmda(RMDx = 0x00, max) = Rmd_0(1 + \frac{\Delta Rmd(\%)}{100})^{16}$

$$286 = Rmd_0(1 + \frac{3.3}{100})^{16}$$

 $Rmd_0 = 170\Omega$

Therefore:

$$Imon(max) = \frac{Vref(0x3FF,min)}{2 \cdot Rmd_0} = \frac{1.00}{2 \cdot 170} = 2.94 \, mA$$

Any other Imon value can be calculated using Rmd formula above. Due to its logarithmic characteristic, the steps between two consecutive values is kept within 3.3% typical value.

A programmable overcurrent shutdown can be set to protect the laser by disabling the channel. The overcurrent protection value (Ilim) must be configured in register ILIMx using the following equations:

$$Ilim = (\Delta I(LDA), max) \cdot n \cdot k$$

$$n = \frac{llim}{k \cdot \Delta l(LDA), max}$$

with n from 1 to 255.

ILIM set to 0x00 disables the overcurrent protection in ACC mode. in APC mode, the overcurrent protection cannot be disabled.

 $\Delta I(LDA)$, max is the shutdown current threshold resolution (maximum value) (cf. Electrical Characteristics No. 108). Its value depend on the current range defined by register bit RACCx. If RACCx = 1, the overcurrent threshold is in the low range and $\Delta I(LDA)$, max = 0.375 mA. If RACCx = 0, the overcurrent threshold is in the high range and $\Delta I(LDA)$, max = 3 mA.

Register CRNGx splits each current range into 4 additional current ranges. k is a current range factor, with a value depending on CRNGx(1:0) register:

DUAL CW P-TYPE LASER DIODE DRIVER Preliminary

CRNG1(1:0) R/W 00 Addr. 0x1E; bit 1:0 00 Output current range from 0 to 750 mA, RACC1 = 0, k factor set to 750/750 = 1 01 Output current range from 0 to 100 mA, RACC1 = 0, k factor set to 100/750,=0.13 10 Output current range from 0 to 25 mA, RACC1 = 0, k factor set to 25/750 = 0.03 11 Output current range from 0 to 9 mA, RACC1 = 0, k factor set to 9/750 = 0.012 00 Output current range from 0 to 90 mA, RACC1 = 1, k factor set to 750/750 = 1 01 Output current range from 0 to 12 mA, RACC1 = 1, k factor set to 100/750 = 0.13 10 Output current range from 0 to 3 mA, RACC1 = 1, k factor set to 25/750 = 0.03 Output current range from 0 to 1.1 mA, RACC1 = 1, k 11 factor set to 9/750 = 0.012

Table 16: Current range channel 1

Rev B1, Page 16/51

Haus

ILIM1	Addr. 0x11; bit 7:0	R/W 0xFF
0x00	Channel 1 overcurrent threshold set to the minimum current in APC mode (EACC1 = 0) or overcurrent protection disabled in ACC mode (EACC1 = 1)	
	Channel 1 overcurrent threshold set to $llim = (\Delta l(LDA), max \cdot n \cdot k)$, n from 0 to 255	
0xFF	Channel 1 overcurrent threshold set to the maximum current	

Table 18: Overcurrent threshold configuration channel 1

ILIM2	Addr. 0x16; bit 7:0	R/W 0xFF
0x00	Channel 2 overcurrent threshold set to the minimum current in APC mode (EACC2 = 0) or overcurrent protection disabled in ACC mode (EACC2 = 1)	
	Channel 2 overcurrent threshold set to $Ilim = (\Delta I(LDA), max \cdot n \cdot k)$, n from 0 to 255	
0xFF	Channel 2 overcurrent threshold set current	to the maximum

Table 19: Overcurrent threshold configuration channel 2

CRNG2(1:0)	Addr. 0x1E;	bit 5:4	R/W 00
00	Output current range k factor set to 750/7	,	RACC2 = 0,
01	Output current range from 0 to 100 mA, RACC2 = 0, k factor set to 100/750,=0.13		
10	Output current range from 0 to 25 mA, RACC2 = 0, k factor set to 25/750 = 0.03		
11	Output current range factor set to 9/750 =		ACC2 = 0, k
00	Output current range factor set to 750/750		ACC2 = 1, k
01	Output current range factor set to 100/750	,	ACC2 = 1, k
10	Output current range factor set to 25/750 =	,	ACC2 = 1, k
11	Output current range factor set to 9/750 =		ACC2 = 1, k

Table 17: Current range channel 2

An overcurrent event can be simulated using SOVCx. If SOVCx = 1, the corresponding overcurrent error bit OVCx will be set to 1, the error will be signaled at NCHK and the corresponding laser channel will be disabled. The overcurrent error will remain forced until SOVCx = 0.

SOVC1	Addr. 0x1D; bit 5	R/W 0
0	No Overcurrent event at channel 1 is simulated	
1	Overcurrent event at channel 1 simulated	

Table 20: Simulate overcurrent channel 1

SOVC2	Addr. 0x1D; bit 6	R/W 0
0	No overcurrent event at channel 2 is simulated	
1	Overcurrent event at channel 2 simulated	

Table 21: Simulate overcurrent channel 2

Rev B1, Page 17/51

aus

ACC mode

In this mode, the laser diode current is controlled and no monitor diode is required. ACC mode is selected setting EACCx register bit to 1. Figure 7 shows an example of this configuration.

EACC1	Addr. 0x10; bit 0	R/W 0
0	APC mode enabled for channel 1 (lig regulation)	ht power
1	ACC mode enabled for channel 1 (la regulation)	ser current

Table 22: Enable APC/ACC channel 1

EACC2	Addr. 0x15; bit 0	R/W 0
0	APC mode enabled for channel 2 (lig regulation)	ght power
1	ACC mode enabled for channel 2 (la regulation)	aser current

Table 23: Enable APC/ACC channel 2

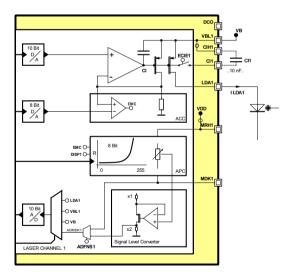
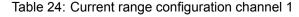



Figure 7: ACC mode simplified

In ACC mode an internal resistor (RACCx) is used instead of the internal programmable logarithmic monitor resistor (PLR). Different current ranges can be selected though register bits RACCx and CRNGx(1:0).

RACC1	Addr. 0x1A; bit 0	R/W 0
0	Current range high for channel 1, Current sensor resistor (Rsensex) set to $2k\Omega$	
1	Current range low for channel 1, Current sensor resistor (Rsensex) set to $16k\Omega$	

RACC2	Addr. 0x1A; bit 4	R/W 0
0	Current range high for channel 2, Current sensor resistor (Rsensex) set to $2k\Omega$	
1	Current range low for channel 2, Current sensor resistor (Rsensex) set to $16k\Omega$	

Table 25: Current range	configuration channel 2
-------------------------	-------------------------

CRNG1(1:0)	Addr. 0x1E;	bit 1:0	R/W 00
00	Output current range k factor set to 750/7		, RACC1 = 0,
01	Output current range k factor set to 100/75		, RACC1 = 0,
10	Output current range from 0 to 25 mA, RACC1 = 0, k factor set to 25/750 = 0.03		
11	Output current range factor set to 9/750 =	,	ACC1 = 0, k
00	Output current range factor set to 750/750		RACC1 = 1, k
01	Output current range factor set to 100/750		RACC1 = 1, k
10	Output current range factor set to 25/750 =	,	ACC1 = 1, k
11	Output current range factor set to 9/750 =		RACC1 = 1, k

Table 26: Current range channel 1

CRNG2(1:0)	Addr. 0x1E;	bit 5:4	R/W 00
00	Output current range k factor set to 750/7	e from 0 to 750 mA, R 50 = 1	ACC2 = 0,
01		Output current range from 0 to 100 mA, RACC2 = 0, k factor set to 100/750,= 0.13	
10	Output current range factor set to 25/750	e from 0 to 25 mA, RA = 0.03	CC2=0, k
11	Output current range factor set to 9/750 =	e from 0 to 9 mA, RAC 0.012	C2=0, k
00	Output current range factor set to 750/750	e from 0 to 90 mA, RA) = 1	CC2=1, k
01	Output current range factor set to 100/750	e from 0 to 12 mA, RA 0 = 0.13	CC2=1, k
10	Output current range factor set to 25/750	e from 0 to 3 mA, RAC = 0.03	C2 = 1, k
11	Output current range factor set to 9/750 =	e from 0 to 1.1 mA, RA 0.012	CC2 = 1, k

Table 27: Current range channel 2

Table 28 shows a list with all selectable current ranges.

ACC Current Ranges			
CRNGx(1:0)	RACCx	ldc(LDA)	
00	0	750 mA	
01	0	100 mA	
00	1	90 mA	
10	0	25 mA	
01	1	12 mA	
11	0	9 mA	
10	1	3 mA	
11	1	1.1 mA	

Table 28: ACC current ranges

For fine-tuning the regulated current, the reference voltage can be set with a 10 bit logarithmic D/A converter, which is configurable through the register REFx. This converter has a voltage range that goes typically from 0.1 V to 1.1 V, allowing an operation resolution of typically 0.235%. More information on the logarithmic D/A converter can be found on page 29.

A programmable overcurrent threshold is available in order to protect the laser diode during the power-on instant. The overcurrent protection value, Ilim, must be configured in the 8 bit register ILIMx using the following equations:

$$Ilim = (\Delta I(LDA), max) \cdot n \cdot k$$

$$n = \frac{llim}{k \cdot \Delta l(LDA), max}$$

with n from 0 to 255.

If ILIM is set to 0 in ACC mode, the overcurrent protection is disconnected.

 $\Delta I(LDA)$, max is the shutdown current threshold resolution (maximum value) (cf. *Electrical Characteristics No. 108*). Its value depend on the current range defined by register bit RACCx. If RACCx = 1, the overcurrent threshold is in the low range and $\Delta I(LDA)$, max = 0.375 mA. If RACCx = 0, the overcurrent threshold is in the high range and $\Delta I(LDA)$, max = 3 mA. k is a current range factor, with a value depending on CRNGx(1:0) register Rev B1, Page 18/51

ILIM1	Addr. 0x11; bit 7:0	R/W 0xFF
0x00	Channel 1 overcurrent threshold set current in APC mode (EACC1 = 0) or protection disabled in ACC mode (E	or overcurrent
	Channel 1 overcurrent threshold set to $llim = (\Delta l(LDA), max \cdot n \cdot k)$, n from 0 to 255	
0xFF	Channel 1 overcurrent threshold set current	to the maximum

Table 29:	Overcurrent threshold configuration	
	channel 1	

ILIM2	Addr. 0x16; bit 7:0	R/W 0xFF
0x00	Channel 2 overcurrent threshold set to the minimum current in APC mode (EACC2 = 0) or overcurrent protection disabled in ACC mode (EACC2 = 1)	
	Channel 2 overcurrent threshold set to $llim = (\Delta l(LDA), max \cdot n \cdot k), n \text{ from 0 to 255}$	
0xFF	Channel 2 overcurrent threshold set current	to the maximum

Table 30: Overcurrent threshold configuration channel 2

An overcurrent event can be simulated using bit SOVCx. If SOVCx = 1, the corresponding overcurrent error bit OVCx will be set to 1, the error will be signaled through NCHK and the corresponding laser channel will be disabled. The overcurrent error will remain forced until SOVCx = 0.

SOVC1	Addr. 0x1D; bit 5	R/W 0
0	No Overcurrent event at channel 1	is simulated
1	Overcurrent event at channel 1 sim	ulated

Table 31: Simulate overcurrent channel 1

SOVC2	Addr. 0x1D; bit 6	R/W 0
0	No overcurrent event at channel 2 is s	imulated
1	Overcurrent event at channel 2 simula	ted

Table 32: Simulate overcurrent channel 2

Calculating the expected output current in ACC mode

The following formula can be used to estimate the expected current value for an ACC configuration. The resulting value is a typical value.

$$llaser(typ) = \frac{Vrefx}{Rsensex} \cdot MFACTx$$

Where

Vrefx = *Vref*₀(1 +
$$\frac{\Delta Vref(\%)}{100}$$
)^{*n*+1}, n from 0 to 1023

Rev B1, Page 19/51

*Vref*₀ is the minimum value (typically 0.1 V), Δ *Vref*(%) is the step value (typically 0.235%) and n is the value of REFx register in decimal.

Rsensex is $2k\Omega$ when RACCx = 0 or $16k\Omega$ when RACCx = 1

MFACTx depends on several parameters as stated in the following table:

ACC mirror factor		
MERGE	CRNGx	Mirror factor
0	00	Mirror Factor set to 2500
0	01	Mirror Factor set to 333
0	10	Mirror Factor set to 83
0	11	Mirror Factor set to 30
1	00	Mirror Factor set to 5000
1	01	Mirror Factor set to 666
1	10	Mirror Factor set to 166
1	11	Mirror Factor set to 60

Table 33: Mirror factor

Table 34 shows some typical current settings. For detailed limits, please refer to Electrical Characteristics No. 114

ACC typica	ACC typical current settings		
CRNG(1:0)	REFx	RACCx=0	RACCx=1
00	0x000	125.3 mA	15.66 mA
00	0x001	125.6 mA	15.70 mA
00	0x010	125.9 mA	15.73 mA
00	0x200	416.6 mA	52.08 mA
00	0x201	417.6 mA	52.20 mA
00	0x202	418.6 mA	52.33 mA
00	0x3FD	1376.1 mA	172.01 mA
00	0x3FE	1379.3 mA	172.41 mA
00	0x3FF	1382.6 mA	172.82 mA

Table 34: ACC typical current settings

In ACC mode, the MDKx pin can be monitored through a 10 bit A/D converter from 0 V up to 1.1 V. This can be used for measuring the laser light power, if a photodiode is connected to pin MDKx, as it is shown in figure 8. This allows adjusting the voltage reference in order to set the laser current and obtain the desired laser light power.

The internal programmable logarithmic monitor Resistor (PLR), if enabled (DISPx = 0), gives feedback for the current control through the 10 bit A/D converter. Register bit ADFNSx must be set to 0 in order to measure the internal sense node. An external monitor resistor can be used to measure the optical power, achieved by setting DISPx to 1. Therefore register bit ADFNSx must be set to 1 in order to measure directly at pin MDKx.

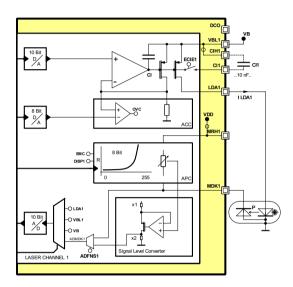


Figure 8: ACC with monitor photodiode

ACC mode permits combining both channels in one iC-HTP (see chapter COMBINING BOTH CHANNELS) and several iC-HTP in parallel. When both channels are combined the programmable overcurrent shutdown is carried out per each channel. If both channels are configured in ACC mode, LDA1 and LDA2 can be connected together. Each channel can be configured with a different current range, yielding different granularity in steps regulation for each channel.

The Regulator

In MCU mode the control can be carried out without the need of external capacitor. This allows a fast response of the regulator. The speed of the regulator's response and stability can be configured using three bits (COMPx), providing a current compensation factor.

COMP1	Addr. 0x13; bit 6:4	R/W 011
000	Minimum compensation current for regulator, slower response	the channel 1
 111	Maximum compensation current fo regulator, faster response	r the channel 1

Table 35: Current compensation channel 1

Rev B1, Page 20/51

laus

COMP2	Addr. 0x18;	bit 6:4	R/W 011
000	Minimum compensa regulator, slower res		e channel 2
111	Maximum compens regulator, faster res		e channel 2

Table 36: Current compensation channel 2

Alternatively it is possible to use external capacitors connected to pins CIx and CIHx. In this case, register bit ECIEx should be set to 1 and COMPx to its highest value, "111".

ECIE1	Addr. 0x10; bit 1	R/W 0
0	External CI capacitor for channel 1 disc	onnected
1	External CI capacitor for channel 1 connected	

Table 37: Enable external CI capacitor channel 1

ECIE2	Addr. 0x15; bit 1	R/W 0
0	External CI capacitor for channel 2 dis	connected
1	External CI capacitor for channel 2 cor	nnected

Table 38: Enable external CI capacitor channel 2

The regulator is offset compensated in order to prevent optical power drifts. Offset compensation can be disabled by setting register bit EOCx to 0.

EOC1	Addr. 0x10; bit 4	R/W 1
0	Channel 1 regulator offset compensation	n disabled
1	Channel 1 regulator offset compensation	n enabled

Table 39: Enable offset compensation channel 1

EOC2	Addr. 0x15; bit 4	R/W 1
0	Channel 2 regulator offset compensati	on disabled
1	Channel 2 regulator offset compensati	on enabled

Table 40: Enable offset compensation channel 2

An internal oscillator is used for the offset compensation. A watchdog timer (WDT) is included in order to monitor proper function of the oscillator. If an error is detected by the WDT, the laser channels are operated with an offset to ensure a safe power level, OSCERR error bit is set in STATUS0 register and the error event is signaled at pin NCHK. This error signaling can be suppressed using the mask register bit MOSCERR (set to 1).

MOSCERR	Addr. 0x1D; bi	it 0 R/W	0
0	Oscillator error (watcho	dog) will be signaled at NC⊢	ΙK
1	Oscillator error (watchdog) will not be signaled at NCHK		

iC-HTP monitors the saturation voltage of the regulator's output transistor at pin LDAx. The LDA saturation threshold can be configured through register bits RL-DASx.

RLDAS1	Addr. 0x13; bit 3:2 R/W 00
00	V(LDA1) > VBL1-0.5 V sets the LDASAT1 alarm bit
01	V(LDA1) > VBL1-0.8 V sets the LDASAT1 alarm bit
10	V(LDA1) > VBL1-1.0 V sets the LDASAT1 alarm bit
11	V(LDA1) > VBL1-1.2 V sets the LDASAT1 alarm bit

Table 42: LDA saturation threshold selection channel 1

RLDAS2	Addr. 0x18; bit 3:2 R/W 00
00	V(LDA2) > VBL2-0.5 V sets the LDASAT2 alarm bit
01	V(LDA2) > VBL2-0.8 V sets the LDASAT2 alarm bit
10	V(LDA2) > VBL2-1.0 V sets the LDASAT2 alarm bit
11	V(LDA2) > VBL2-1.2 V sets the LDASAT2 alarm bit

Table 43: LDA saturation threshold selection channel 2

If the LDAx voltage goes upper than the LDA saturation threshold the LDASATx error bit in STATUS1 register will be set and it will be signaled through output pin NCHK. Setting the mask register bit MLDASATx to 1 suppresses the signaling at NCHK.

MLDASAT1	Addr. 0x1D; bit 2	R/W 1	
0	LDASAT1 event will be signaled at NCHK		
1	LDASAT1 event will not be signaled at NCHK		

Table 44: LDA saturation error mask channel 1

MLDASAT2	Addr. 0x1D;	bit 3	R/W 1
0	LDASAT2 event will be signaled at NCHK		
1	LDASAT2 event will not be signaled at NCHK		

Table 45: LDA saturation error mask channel 2

Laser channel enabling and error handling

With pin INS/WKR or EMC unconnected, a corresponding error signal will be generated (INSOPEN, EM-COPEN). Any of these error signals will disable the laser channels.

Setting DISC1 and DISC2 to 1(default) disables the corresponding channel.

The errors in STATUS0 and STATUS1 registers disable the laser channels. Every change in the STATUS registers is signaled at pin NCHK, unless the error event is masked by the corresponding error mask bit. DUAL CW P-TYPE LASER DIODE DRIVER Preliminary

Rev B1, Page 21/51

aus

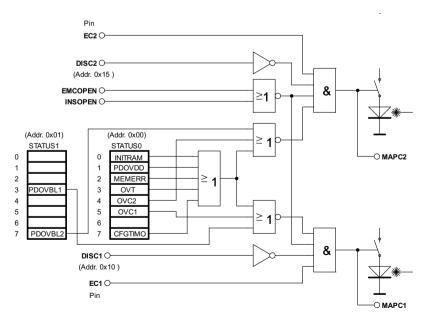
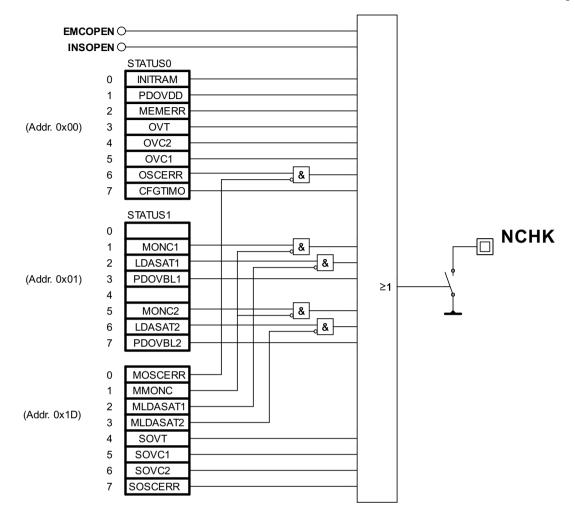
Register	Address	Bits	Default	Description	
INITRAM	0x00	0	R/O	RAM initialized.	
PDOVDD	0x00	1	R/O	Power down event at VDD	
MEMERR	0x00	2	R/O	RAM memory validation error	
OVT	0x00	3	R/O	Overtemperature event	
OVC2	0x00	4	R/O	Overcurrent at channel 2	
OVC1	0x00	5	R/O	Overcurrent at channel 1	
OSCERR	0x00	6	R/O	Oscillator error (watchdog set)	
CFGTIMO	0x00	7	R/O	Configuration mode timeout event	
MAPC1	0x01	0	R/O	Channel 1 current state	
MONC1	0x01	1	R/O	Monitor channel 1 enabled at least once (latched)	
LDASAT1	0x01	2	R/O	Channel 1 LDA saturation event	
PDOVBL1	0x01	3	R/O	Power down event at VBL1 or VBL1 not equal to VBL2 in merge mode	
MAPC2	0x01	4	R/O	Channel 2 current state	
MONC2	0x01	5	R/O	Monitor channel 2 enabled at least once (latched)	
LDASAT2	0x01	6	R/O	Channel 2 LDA saturation event	
PDOVBL2	0x01	7	R/O	Power down event at VBL2 or Power down in any of VBL1 or VBL2 in merge mode	

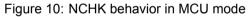
Table 46: Status registers overview

In order to enable the channels, the error events must be acknowledged. Acknowledging an error is accomplished by reading the STATUS register. After a power-on PDOVDD, PDOVBL1, PDOVBL2 and INITRAM errors will be set, therefore it is required to read STA-TUS0 and STATUS1 registers after each power-on.

Exiting standby mode will not reset the RAM but will set the PDOVDD status bit. Therefore STATUS0 must be read once after each standby to re-enable the laser channels. In case of an overcurrent (OVC) or an overtemperature (OVT) event, laser channels are disabled.

A memory error event and a configuration timeout error event will also disable the laser channels. More information about the memory error on page 38. The conditions to enable each laser channel are shown in figure 9.


Figure 9: Laser control logic in MCU mode

DUAL CW P-TYPE LASER DIODE DRIVER Preliminary

Rev B1, Page 22/51

Haus

Haus

COMBINING BOTH CHANNELS

iC-HTP can drive one laser diode up to 1500 mA with both channels combined. Therefor register bit MERGE must be set to 1. Disable channel register bits DISC1 and DISC2 must both be set to 0 and both enable channel pins EC1 and EC2 must be set hi.

MERGE	Addr. 0x1B; bit 6	R/W 0	
0	Channel 1 and 2 operate independently		
1	Power transistor from channel 2 usable in parallel with channel 1, regulation made by channel 1		

Table 47: Channel combination

Different current ranges can be configured using CRNG1 and CRNG2. The resulting range is the addition of both configured ranges.

CRNG1(1:0)	Addr. 0x1E;	bit 1:0	R/W 00
00	Output current range k factor set to 750/75	e from 0 to 750 mA, RA 50 = 1	ACC1 = 0,
01	Output current range from 0 to 100 mA, RACC1 = 0, k factor set to 100/750,= 0.13		
10	Output current range factor set to 25/750 =	from 0 to 25 mA, RA0 0.03	CC1 = 0, k
11	Output current range factor set to 9/750 = 0	e from 0 to 9 mA, RAC 0.012	C1 = 0, k
00	Output current range factor set to 750/750	from 0 to 90 mA, RA0 = 1	CC1 = 1, k
01	Output current range factor set to 100/750	from 0 to 12 mA, RA0 = 0.13	CC1 = 1, k
10	Output current range factor set to 25/750 =	e from 0 to 3 mA, RAC = 0.03	C1 = 1, k
11	Output current range factor set to 9/750 = 0	from 0 to 1.1 mA, RA0 0.012	CC1 = 1, k

Table 48: Current range channel 1

CRNG2(1:0)	Addr. 0x1E;	bit 5:4	R/W 00
00	Output current range k factor set to 750/75	e from 0 to 750 mA, RA 50 = 1	ACC2 = 0,
01	Output current range k factor set to 100/75	e from 0 to 100 mA, RA 50,=0.13	ACC2 = 0,
10	Dutput current range from 0 to 25 mA, RACC2 = 0, k actor set to 25/750 = 0.03		
11	Output current range factor set to 9/750 =	e from 0 to 9 mA, RAC 0.012	C2=0, k
00	Output current range factor set to 750/750	from 0 to 90 mA, RA0 = 1	CC2 = 1, k
01	Output current range factor set to 100/750	from 0 to 12 mA, RA0 = 0.13	CC2 = 1, k
10	Output current range factor set to 25/750 =	e from 0 to 3 mA, RAC = 0.03	C2 = 1, k
11	Output current range factor set to 9/750 =	from 0 to 1.1 mA, RA0 0.012	CC2 = 1, k

Table 49: Current range channel 2

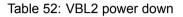
In ACC mode, only RACC1 modifies the current range and for both channels the same.

	Current ranges in merge mode for ACC			
RACC1	CRNG1	CRNG2	Current Range	
0	00	00	1500 mA	
0	00	01	850 mA	
0	00	10	775 mA	
0	00	11	759 mA	
0	01	00	850 mA	
1	00	00	180 mA	
1	00	01	102 mA	
1	00	10	93 mA	
1	00	11	91.1 mA	
1	01	00	102 mA	

Table 50: Merge mode current ranges

When both channels are combined the control is done by channel 1. APC and ACC can both be used with both channels combined.

In ACC mode, the reference needs to be configured according to the selected current range (if both CRNG1 and CRNG2 are the same, set to 50% of the equivalent value for a single channel operation). This is not required for APC.


Both VBL1 and VBL2 must be connected to the same voltage level. If voltages at VBL1 and VBL2 are different, PODOVBL1 bit in status register will be set and laser will be shut down. In merge mode, the PODOVBL2 bit is used to monitor both VBL1 and VBL2 voltages for power down. If any of the VBL1 or VBL2 are in power down, this bit will be set.

PDOVBL1	Addr. 0x01; bit 3 R	
0	VBL1 power down not occurred since last read. If MERGE = 1, VBL1 voltage level equals VBL2 voltage level	
1	VBL1 power down event has occurred. If MERGE = 1, VBL1 voltage level not equals VBL2 voltage leve Cleared on read	

Rev B1, Page 24/51

Haus

PDOVBL2	Addr. 0x01; bit 7 R	
0	VBL2 power down not occurred since last read. If MERGE = 1, VBL1 and VBL2 had no power down since last read	
1	VBL2 power down event has occurred. If MERGE = 1, VBL1 or VBL2 had a power down event. Cleared on read	

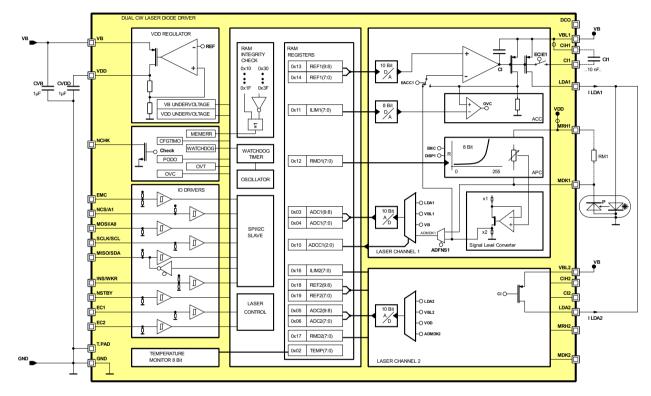


Figure 11: Combining both channels

In combined mode, the internal CI nodes of both channels are connected together. If required, an external capacitor on channel 1 can be used for improved stability. It is possible to have an additional external capacitor on channel 2 if ECIE2 bit is set to 1. Having an external capacitor on channel 2 and none on channel 1 is invalid.

On combined operation both overcurrent thresholds are active. The overcurrent threshold channel 1 ILIM1 needs to be set accordingly to the selected current range as stated below. If both CRNG1 and CRNG2 are the same, set to 50% of the equivalent value for a single channel operation.

$$llim(merge) = (\Delta l(LDA), max) \cdot n \cdot (k1 + k2)$$

Where k1 depends on CRNG1 and k2 depends on CRNG2.

$$n = \frac{llim(merge)}{(k1 + k2) \cdot \Delta l(LDA), max}$$

with n from 1 to 255.

The overcurrent threshold channel 2 ILIM2 must be disabled by setting it to its minimum value (0x00). An overcurrent will only be detected on channel 1.

ILIM1	Addr. 0x11; bit 7:0	R/W 0xFF		
0x00	current in APC mode (EACC1 = 0)	Channel 1 overcurrent threshold set to the minimum current in APC mode (EACC1 = 0) or overcurrent protection disabled in ACC mode (EACC1 = 1)		
	Channel 1 overcurrent threshold set to $llim = (\Delta I(LDA), max \cdot n \cdot k), n \text{ from 0 to 255}$			
0xFF	Channel 1 overcurrent threshold set current	to the maximum		

Table 53: Overcurrent threshold configuration channel 1

Rev B1, Page 25/51

ILIM2	Addr. 0x16; bit 7:0	R/W 0xFF		
0x00	Channel 2 overcurrent threshold set to the minimum current in APC mode (EACC2 = 0) or overcurrent protection disabled in ACC mode (EACC2 = 1)			
	Channel 2 overcurrent threshold set to $llim = (\Delta l(LDA), max \cdot n \cdot k)$, n from 0 to 255			
0xFF	Channel 2 overcurrent threshold se current	et to the maximum		

It is possible to use a second photodiode connected to channel 2 (e.g. as a safety supervisor). The ADC on channel 2 can be used to monitor the voltage at pin MDK2, as it is shown in figure 12.

Table 54: Overcurrent threshold configuration channel 2

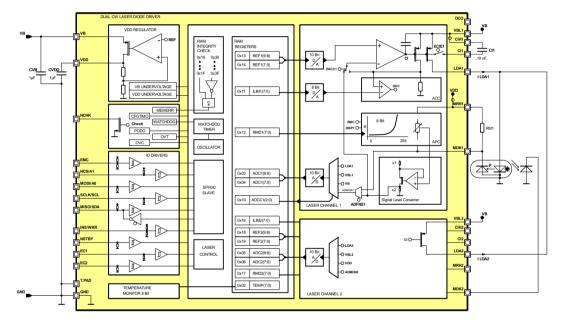


Figure 12: Additional photodiode in combined configuration

Rev B1, Page 26/51

SERIAL COMMUNICATION INTERFACES

SPI slave interface

The SPI slave interface is enabled by setting pin INS/WKR to Io and uses pins NCS/A1, SCLK/SCL, MISO/SDA and MOSI/A0. Pin NCS/A1 is the chip select pin and must be set Io by the SPI master in order to start communication. Pins MISO/SDA and MOSI/A0 are the data communication lines and pin SCLK/SCL is the clock line generated by the SPI master (e.g. microcontroller). The SPI protocol frames are shown in figure 13.

A communication frame consists of one address byte and at least one data byte. Bits 7:6 of the address byte is the opcode used for selecting a read operation (set to "10") or a write (set to "01") operation. The remaining 6 bits are used for register addressing.

It is possible to transmit several bytes consecutively, if the NCS signal is not reset and SCLK/SCL keeps clocking, as it is shown in figure 13. The address is internally incremented after each transmitted byte. Once the address reaches the last register (0x3F), it is reset back to 0x00.

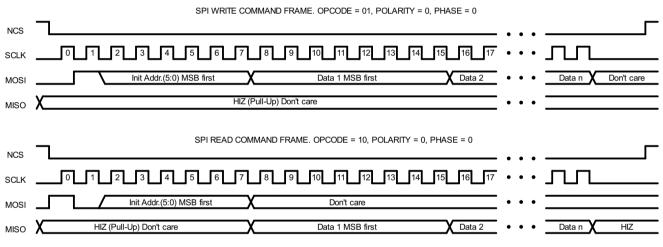


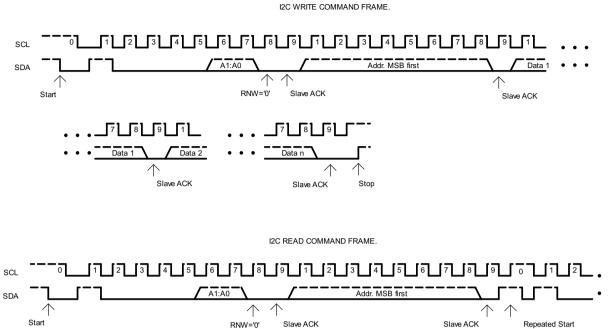
Figure 13: SPI read and write commands

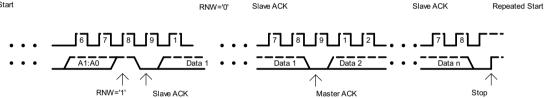
I²C slave interface

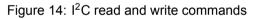
The I²C slave interface is enabled by setting pin INS/WKR to hi and uses pins NCS/A1, SCLK/SCL, MISO/SDA and MOSI/A0. The protocol frames are shown in figure 14.

Action	b7	b6	b5	b4	b3	b2	b1	b0
Write to slave	1	0	0	0	0	A1	A0	0
Read from slave	1	0	0	0	0	A1	A0	1

Table 55: I²C write/read byte


Action	A1	A 0	Slave ID	Address byte
Write to slave 0	lo	lo	0x40	0x80
Read from slave 0	lo	lo	0x40	0x81
Write to slave 1	lo	hi	0x41	0x82
Read from slave 1	lo	hi	0x41	0x83
Write to slave 2	hi	lo	0x42	0x84
Read from slave 2	hi	lo	0x42	0x85
Write to slave 3	hi	hi	0x43	0x86
Read from slave 3	hi	hi	0x43	0x87


Table 56: I²C write/read address


A communication frame consists of one slave address byte, one register address byte and at least one data byte. Bits 7:1 of the slave address byte form the slave identification code (ID) and bit 0 is used for specification of the data direction (0 for write, 1 for read). The slave ID consists of 7 bits. The five most significant bits are fixed by default to value 0b10000. Pins MOSI/A0 and NCS/A1 are used to set the remaining slave ID bits (see table 55 and 56). iC-HTP DUAL CW P-TYPE LASER DIODE DRIVER Preliminary

Rev B1, Page 27/51

aus

Rev B1, Page 28/51

8 BIT INTERNAL PROGRAMMABLE LOGARITHMIC MONITOR RESISTORS

In MCU mode internal 8 bit programmable logarithmic monitor resistors (PLRx) are provided for APC.

The resistor value can be selected from 256 values, ranging from 100Ω to $407 k\Omega$, following logarithmic increments with a typical step width of 3.3%. The resistors are configured with registers RMDx(7:0).

RMD1	Addr. 0x12; bit 7:0	R/W 0xFF
0x00	PLR1 set to the minimum resistance	
	PLR1 resistor set to $Rmd = Rmd_0(1 n \text{ from } 0 \text{ to } 255)$	$+ \frac{\Delta Rmd(\%)}{100})^{n+1},$
0xFF	PLR1 resistor set to the maximum re	sistance

Table 57: MDK resistor channel 1

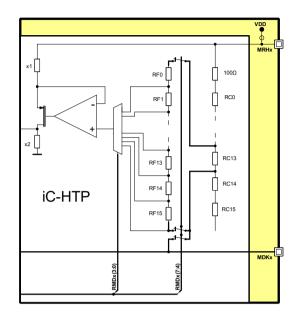


Figure 15: PLR internal node regulation

RMD2	Addr. 0x17; bit 7:0	R/W 0xFF
0x00	PLR2 resistor set to the minimum res	
	PLR2 resistor set to $Rmd = Rmd_0(1 $ n from 0 to 255	$+ \frac{\Delta Rmd(\%)}{100})^{n+1},$
0xFF	PLR2 resistor set to the maximum re	sistance

Table 58: MDK resistor channel 2

The following formula calculates the register RMDx in order to set the desired resistor value:

$$Rmd = Rmd_0(1 + \frac{\Delta Rmd(\%)}{100})^{n+1}$$
, n from 0 to 255

Where Rmd_0 is the minimum resistor value (typically 100 Ω), $\Delta Rmd(\%)$ is the step between two consecutive resistor values (typically 3.3%) and n is the value of RMDx register in decimal.

In APC mode the regulation node is the internal connection to PLR, it is not MDAx pin. Voltage present at pin MDKx may differ from the internal regulation node (see detail in Figure 15). This regulation node can be sensed through the 10 bit A/D converter and read at register ADCx. Register bit ADFNSx must be set to 0 for this purpose. If ADFNSx is set to 1, MDKx pin will be the input of the A/D converter.

At pin MDKx only the 4 MSB of the RMDx configuration from PLRx are measurable. The 8 bits of the PLRx configuration RMDx can be measured with the A/D converter setting ADFNSx to 0.

The PLRx can be disabled using register bit DISPx. With DISPx = 0 the PLRx is enabled and DISPx = 1 disables the PLRx.

DISP1	Addr. 0x10; bit 2	R/W 0
0	PLR enabled for channel 1	
1	PLR disabled for channel 1	

Table 59: Disable PLR channel 1

DISP2	Addr. 0x15; bit 2	R/W 0
0	PLR enabled for channel 2	
1	PLR disabled for channel 2	

Table 60: Disable PLR channel 2

Rev B1, Page 29/51

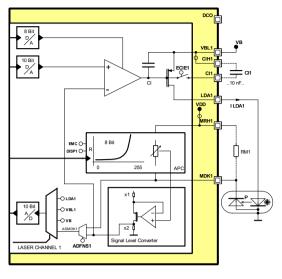


Figure 16: PLR in APC

In ACC mode the PLR is not used in the control circuit. Instead, the internal RACCx resistor is used in the control loop.

Even though the PLR is not in the control circuit, it can be enabled (DISPx = 0) in order to give feedback through the 10 bit A/D converter for the controlling light power if a monitor diode is connected.

10 BIT LOGARITHMIC D/A CONVERTER

The 10 bit logarithmic D/A converter is used for setting the regulator's voltage reference. The D/A converter is active in all operating modes. In iC-WK mode only two values are available: 0.25 V (setting INS/WKR pin lo) and 0.5 V (setting INS/WKR pin hi). In MCU mode both APC and ACC use the D/A converter. With a range from 0.1 V to 1.1 V and the typical step width is 0.235%.

The D/A converter is configured through register REFx(9:0). With REFx(9:0) = 0x000, D/A output value is set to 0.1 V, and for REFx(9:0) = 0x3FF, D/A output is configured to 1.1 V.

REF1	Addr. 0x13/14; bit 9:0	R/W 0x000
0x000	Channel 1 regulator reference voltag minimum voltage	e set to
	Channel 1 regulator reference voltag Vref = $Vref_0(1 + \frac{\Delta Vref(\%)}{100})^{n+1}$, n from	e set to n 0 to 1023
0x3FF	Channel 1 regulator reference voltag maximum voltage	e set to

Table 61: Regulator voltage reference channel 1

Register bit ADFNSx is set to 0 to measure the internal sense node. Alternatively, an external monitor resistor can be used to measure the optical power, by setting DISPx to 1. Then register bit ADFNSx must be set to 1 in order to measure directly at pin MDKx.

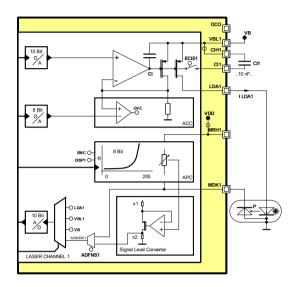


Figure 17: ACC with monitor photodiode

REF2	Addr. 0x18/19; bit 9:0 R/W 0x000	
0x000	Channel 2 regulator reference voltage set to minimum voltage	
	Channel 2 regulator reference voltage set to $Vref = Vref_0(1 + \frac{\Delta Vref(\%)}{100})^{n+1}$, n from 0 to 1023	
0x3FF	Channel 2 regulator reference voltage set to maximum voltage	

Table 62: Regulator voltage reference channel 2

To calculate the D/A converter value for each REFx value, use the following expression:

Vref = *Vref*₀(1 +
$$\frac{\Delta Vref(\%)}{100}$$
)^{*n*+1}, n from 0 to 1023

Where $Vref_0$ is the minimum value (typically 0.1 V), Δ Vref(%) is the step value (typically 0.235%) and n is the value of REFx register in decimal.

Rev B1, Page 30/51

laus

10 BIT LINEAR A/D CONVERTER

A 10 bit linear A/D converter is available for each channel when working in MCU mode. A variety of voltages can be measured by the converter with two resolutions:

- V(LDAx) up to 11 V with 11.81 mV resolution
- V(VDD) up to 8 V with 8.6 mV resolution
- V(VB) up to 11 V with 11.81 mV resolution
- V(VBLx) up to 11 V with 11.81 mV resolution
- V(MDKx) up to 1.1 V with 1.075 mV resolution
- V(RACC) up to 1.1 V with 1.075 mV resolution
- V(PLRx) up to 1.1 V with 1.075 mV resolution

The register bits ADCCx select the signal measured with the 10 bit A/D converter.

ADCC1(2:0)	Addr. 0x10;	bit 7:5	R/W 000
0xx	Channel 1 ADC disa	abled	
100	Channel 1 ADC sou CMES1 = 0	rced by \	V(MDK1), ADFNS1 = 1,
100	Channel 1 ADC sou CMES1 = 0	rced by \	V(PLR1), ADFNS1 = 0,
100	Channel 1 ADC sou CMES1 = 1	rced by A	ACC current sensor,
101	Channel 1 ADC sou	rced by V	V(VB)
110	Channel 1 ADC sou	rced by V	V(VBL1)
111	Channel 1 ADC sou	rced by V	V(LDA1)

Table 63: ADC channel 1 source selection

ADCC2(2:0)	Addr. 0x15;	bit 7:5	R/W 000
0xx	Channel 2 ADC disa	abled	
100	Channel 2 ADC sou CMES2 = 0	rced by V(MI	DK2), ADFNS2 = 1,
100	Channel 2 ADC sou CMES2 = 0	rced by V(PL	.R2), ADFNS2 = 0,
100	Channel 2 ADC sou CMES2 = 1	rced by ACC	current sensor,
101	Channel 2 ADC sou	rced by V(VE)D)
110	Channel 2 ADC sou	rced by V(VE	3L2)
111	Channel 2 ADC sou	rced by V(LD	DA2)

With ADCCx(2:0) = 100, the signal to the A/D converter is selected by register bit ADFNSx (A/D converter force not sense). With ADFNSx = 0 the measuring point to the A/D converter is the internal sense node of the internal programmable logarithmic monitor resistor (PLR). With ADFNSx = 1 the sensing point is connected directly to MDKx pin.

ADFNS1	Addr. 0x1A; bit 2 R/W	0 /
0	ADC measurement PLR1 after level shifting (ser	ise)
1	ADC measurement MDK1 pad (force)	

Table 65: ADC channel 1 force/sense selection

ADFNS2	Addr. 0x1A; bit 6 R/W 0		
0	ADC measurement PLR2 after level shifting (sense)		
1	ADC measurement MDK2 pad (force)		

Table 66: ADC channel 2 force/sense selection

With the CMESx bit, the ADC can be used for laser current measurement in ACC mode. For this measurement, ADCCx register must be set to 100. As shown in figure 7, a fraction of the current delivered by the driver to the laser is mirrored to a resistor. The voltage drop at this resistor is sourced to the ADC. For a given value of the ADC, the current can be calculated as follows

$$I(LDAx) = \frac{\frac{VFS}{1023} * ADCx}{R} * MFACT$$

VFS is the fullscale voltage of the A/D converter (cf. *Electrical Characteristics No. 706*) typical 1.1 V. MFACT is the Mirror factor between the LDA driver and the measurement. This Factor is dependent on the selected current range (CRNG(1:0)), see table below:

ACC mirror factor			
MERGE	CRNGx	Mirror factor	
0	00	Mirror Factor set to 2500	
0	01	Mirror Factor set to 333	
0	10	Mirror Factor set to 83	
0	11	Mirror Factor set to 30	
1	00	Mirror Factor set to 5000	
1	01	Mirror Factor set to 666	
1	10	Mirror Factor set to 166	
1	11	Mirror Factor set to 60	

Table 67: Mirror factor

R is the value of the measurement resistance, this value is dependent on RACC bit, see table below:

RACC1	Addr. 0x1A; bit 0	R/W 0
0	Current range high for channel 1, Current sensor resistor (Rsensex) set to $2k\Omega$	
1	Current range low for channel 1, Current sensor resistor (Rsensex) set to $16k\Omega$	

Table 68: Current range configuration channel 1

IC-HTP DUAL CW P-TYPE LASER DIODE DRIVER Preliminary

RACC2	Addr. 0x1A; bit 4	R/W 0
0	Current range high for channel 2, Current sensor resistor (Rsensex) set to $2k\Omega$	
1	Current range low for channel 2, Current sensor resistor (Rsensex) set to $16k\Omega$	

Table 69: Current range configuration channel 2

Since all of the above values are typical, a first calibration measurement is recommended to calculate the offset of each device.

When enabled, the A/D converter is continuously acquiring the signal selected by ADCCx register. The conversion time, is $140 \,\mu s$. Changing the source requires $500 \,\mu s$ settling time.

In order to do a measurement, register ADCx must be read. The converter does not provide an end of conversion (EOC) bit. Instead, ADCx register contains always the value of the last conversion.

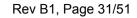
As the A/D converter is 10 bit long, the results are split into two byte wide separated registers; ADCxh contains channel x ADC MSBs values while ADCxl stores the LSBs. A consecutive read action of both registers (lower and upper part) should be carried out in order to prevent an undesired change in the measured value between two read actions.

ADC1	Addr. 0x03/04; bit 9:0	R
0x000	ADC minimum value	
0x3FF	ADC maximum value	

Table 70: ADC channel 1

ADC2	Addr. 0x05/06; bit 9:0	R
0x000	ADC minimum value	
0x3FF	ADC maximum value	

Table 71: ADC channel 2


The voltage corresponding to the measured digital value can be directly obtained through the following formula:

 $V(LDAx, VB, VBLx) = 11 * \frac{VFS}{1023} * ADCx$ $V(VDD) = 8 * \frac{VFS}{1023} * ADCx$

 $V(MDKx, PLRx) = \frac{VFS}{1023} * ADCx$

VFS is the full scale voltage of the A/D converter (cf. *Electrical Characteristics No.* 706) typical 1.1 V. For a more precise measurement, the A/D converter can be calibrated by measuring a known VB voltage and calculate the VFS.

If ADFNSx = 1 the sensing point is connected directly to MDKx pin. Depending on the regulation voltage, it is possible that V(MDKx) is higher than 1.1 V. When MDKx pin is the source of the A/D converter, saturation of the converter will occur. When monitoring pin MDKx with the A/D converter, V(MDKx) must be lower than 1.1 V.

aus

DC/DC CONVERTER OPTIMIZATION

iC-HTP provides a 6 bit configurable current at pin DCO that can be used to trim the output voltage of a DC/DC converter.

Possible application benefits with using DCO:

- DC/DC step down operation: regulation at voltages lower than power supply
- DC/DC step up operation: regulation at voltages higher than power supply
- Efficiency enhancement

RDCO	Addr. 0x1B; bit 5:0) R/W 0x02
0x00	No current	
0x3F	Typ. 130 µA (cf. Electrical Characteristics No. D01)	

Table 72: Digital current output register

The proposed applications can be demonstrated with a standard DC/DC converter e.g. TPS63060DSC from Texas Instruments. This converter allows an input voltage ranging from 2.5 V to 12 V and offers an output voltages from 2.5 V to 8 V. It is capable of delivering up to 2 A current, depending on the output voltage. Figure 18 shows a possible configuration.

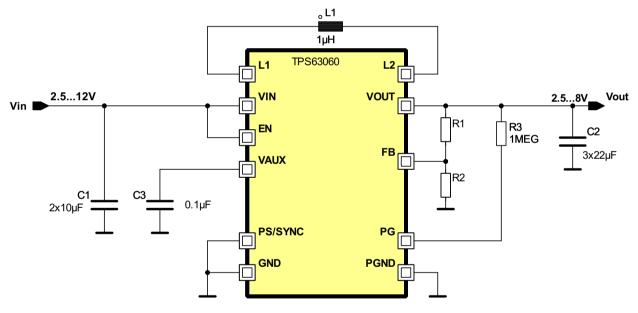


Figure 18: TPS63063 DC/DC converter from TI

DC/DC step down operation:

regulation at voltages lower than power supply

The resistors R1 and R2 in the feedback path allow setting the desired output value Vout. The DC/DC converter drives Vout pin in order to yield 0.5 V at feedback pin FB. The DCO output signal from iC-HTP is connected to FB pin. The Vout is controlled with the internal register RDCO from iC-HTP.

The DCO current into FB node controls the voltages of the divider R1 and R2 and Vout changes in order to maintain 0.5 V at FB pin. Selecting R1 and R2 needs to consider:

- Resistors values:
- $R1 = R2(\frac{Vout}{Vfb} 1)$
- Current of the voltage divider should be high enough, in comparison to the current from the pin DCO, to of-

fer acceptable resolution. The programmable current resolution from register RDCO is 2 µA.

 DCO current into the voltage divider will lower Vout voltage, Vout is 8 V when no current is present at DCO.

Choosing R1 to $100 \text{ k}\Omega$, the value of R2 can be calculated:

$$R2 = \frac{R1}{\frac{Vout}{Vfb} - 1} = \frac{100k}{\frac{8}{0.5} - 1} = 6.7 k\Omega$$

With this configuration the current through the voltage divider is $75\,\mu A$ at $8\,V$. The resolution of each RDCO step is then 200 mV.

Rev B1, Page 33/51

The value in RDCO register needed in order to have the desired output voltage can be calculated using the following formula:

$$RDCO = \frac{ldco}{2uA} = \frac{lR2 - lR1}{2uA} = \frac{\frac{0.5}{6.7k} - \frac{Vout - 0.5}{100k}}{2uA}$$

The resulting value will vary slightly depending on the tolerances of the selected resistors and DCO current.

The voltage is reduced from 8V (RDCO = 0) to 2.5V, when RDCO = 27.

DC/DC step up operation: regulation at voltages higher than power supply

A practical application of the present case is the control of blue lasers. This type of laser present a forward voltage around 5 V, which demands an LDA voltage of about 6 V. If the system is supplied with a 3 V LiPo battery, it is necessary to use a the DC/DC in order to step up and drive the laser diode and driver with a sufficient voltage. Figure 19 shows this application:

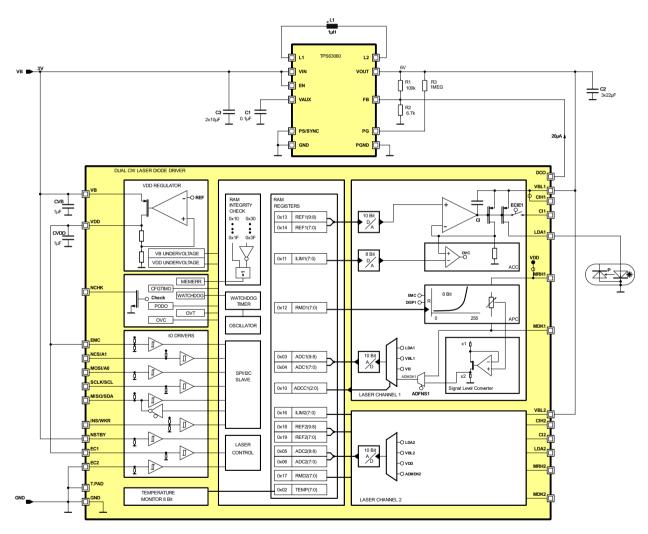


Figure 19: Regulation at voltage greater than power supply

Setting register RDCO to 10 it delivers 20 µA and 6 V are obtained at Vout.

Extension of system working voltage range

iC-HTP must be supplied by a voltage within the thresh-

old values of 2.8 V and 11 V. It is possible to control the DC/DC output in a voltage range of 2.5 V - 12 V if the DC/DC converter, controlled by DCO output signal, is included in the system, as it is shown in figure 20:

IC-HTP DUAL CW P-TYPE LASER DIODE DRIVER Preliminary

Rev B1, Page 34/51

Haus

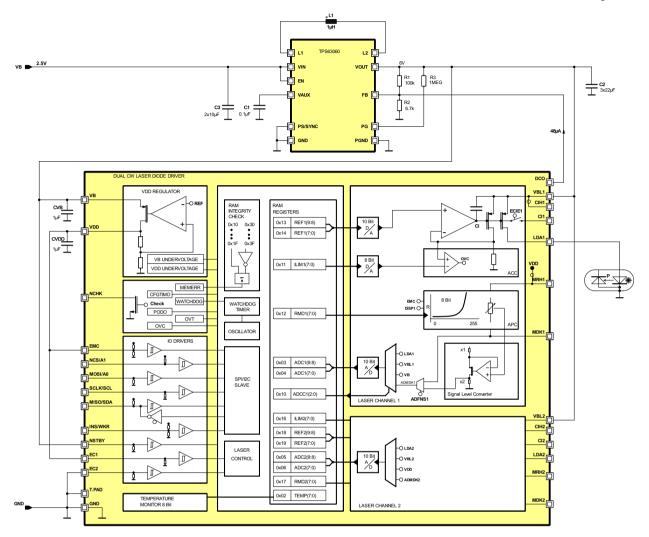


Figure 20: Extension of working voltage range

In the figure 20 both the laser and the iC-HTP are supplied by output voltage Vout from DC/DC converter. The register RDCO is set to 23, which forces $48 \,\mu$ A to be output to the voltage divider. A system voltage of 3.3 V is obtained at Vout.

Efficiency enhancement

If iC-HTP and the laser diode are supplied with the same power supply, the efficiency of the driver can be

improvable, depending on the supplied voltage, the saturation voltage and the laser diodes forward voltage. Power dissipation of the driver can be reduced if LDAx is fed through the DC/DC converter configured to deliver a lower voltage than the power supply as shown in figure 21. iC-HTP DUAL CW P-TYPE LASER DIODE DRIVER Preliminary

Rev B1, Page 35/51

CHaus

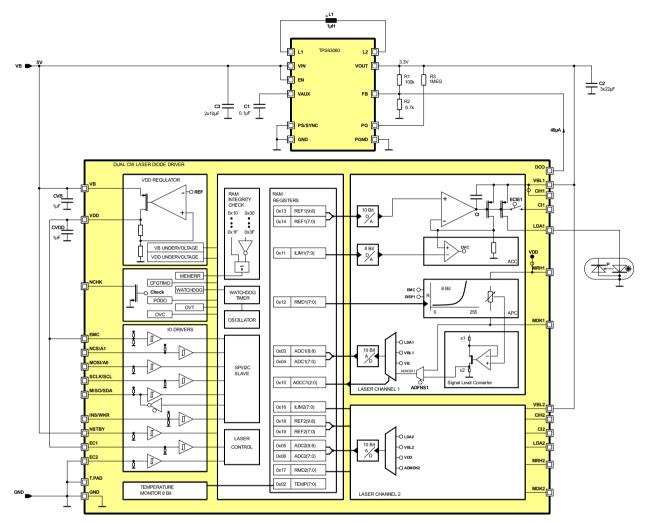


Figure 21: System efficiency enhancement

The register RDCO is set to 23 to provide a laser diode supply voltage of 3.3 V at Vout.

Rev B1, Page 36/51

Haus

WATCHDOG TIMER

The internal 200 kHz oscillator is monitored with the Watchdog Timer (WDT).

If the oscillator remains longer than the maximum time of tWDT (cf. *Electrical Characteristics No. E03*) without activity an oscillator error is triggered. An oscillator error sets OSCERR error bit to 1. The automatic offset compensation of the laser control requires the oscillator.

The state of OSCERR is signaled at pin NCHK. The signaling of OSCERR state can be masked with bit MOSCERR. Setting MOSCERR to 1 masks the oscillator error and OSCERR will not be signaled at NCHK.

It is possible to simulate an error of the oscillator using SOSCERR bit. If SOSCERR = 1, the oscillator error is forced. When OSCERR is set to 1 the error will be signaled through NCHK, depending on the state of MOSCERR.

OSCERR	Addr. 0x00; bit 6	R
0	Oscillator functioning OK	
1	Watchdog timeout set on oscillator failure. Cleared on read	

Table 73: Oscillator watchdog

MOSCERR	Addr. 0x1D; bit 0	R/W 0	
0	Oscillator error (watchdog) will be signaled at NCHK		
1	Oscillator error (watchdog) will not be signaled at NCHK		

Table 74: Oscillator watchdog error mask

SOSCERR	Addr. 0x1D;	bit 7	R/W 0
0	No oscillator error simulated		
1	Oscillator error simulated (watchdog timeout)		

Table 75: Simulate oscillator error

Rev B1, Page 37/51

TEMPERATURE MONITOR AND PROTECTION

iC-HTP includes an 8 bit temperature monitor that allows to measure the internal chip temperature going from -40 °C to 125 °C. The resolution is 1 °C/LSB. The internal temperature can be obtained by reading TEMP register. The TEMP register is a read-only register.

TEMP	Addr. 0x02; bit 7:0	R
0x00	Minimum temperature	
0xFF	Maximum temperature	

Table 76: Chip temperature

Absolute read values may differ from one chip to another. An individual initial calibration of the temperature monitor is recommended. The TEMP register must be read at a known temperature. Using the resolution value of 1 °C/LSB, the internal temperature can be calculated.

The temperature monitor can be used to compensate temperature effects on the laser diode. The microcontroller can use a laser diode characteristic formula or a look-up table combined with the temperature value measured through TEMP register. The reference voltage can be configured accordingly in order to compensate temperature effects.

iC-HTP is protected against overtemperature. In iC-WK mode, if the internal temperature value exceeds the overtemperature threshold an OVT error event will be triggered and signaled through pin NCHK. Both laser channels will be disabled. Pin NCHK will keep signaling the error although the internal temperature goes down to a safe value below the overtemperature threshold value. If the temperature has exceeded the overtemperature threshold value, pins EC1 and EC2 have to be pulled lo in order to stop signaling the error. Setting pin ECx back hi will re-enable the corresponding channel.

In microcontroller mode, if the internal temperature exceeds a safety value an overtemperature error bit (OVT) will be set to 1. If OVT = 1, both channels will be disabled and the error event will be signaled through NCHK pin. If the internal temperature goes down to a safe value below the overtemperature threshold value, OVT will remain at value 1. Reading the OVT bit stop signaling error through pin NCHK. Reading OVT bit will set it back to 0. Setting ECx pin lo and then back hi will allow re-enabling the corresponding channel.

The overtemperature threshold value can not be configured.

OVT	Addr. 0x00; bit 3	R
0	No overtemperature event has occurred since read	last
1	Overtemperature event has occurred. Cleared read	on

Table 77: Overtemperature

In microcontroller mode it is possible to simulate an overtemperature event using SOVT bit. Setting SOVT to 1, the overtemperature error flag OVT will be set to 1. iC-HTP will remain in error state until SOVT is set back to 0.

SOVT	Addr. 0x1D; bit 4	R/W 0
0	No overtemperature event is simulated	
1	Overtemperature event simulated	

Table 78: Simulate overtemperature

Rev B1, Page 38/51

aus

DIGITAL INTERFACE AND MEMORY INTEGRITY MONITOR

iC-HTP provides a microcontroller slave interface by selection on the EMC pin. iC-HTP support the interfaces SPI or I^2C that are selected by the INS/WKR pin.

EMC	Addr. Pin;
lo	iC-WK-mode, digital interfaces disabled
Open	Not allowed, error signaled
hi	MCU mode, interface selected by INS/WKR enabled

Table 79: Enable microcontroller

INS/WKR	Addr. Pin;
lo	SPI interface selected
Open	Not allowed, error signaled.
hi	I ² C interface selected

Table 80: Interface selection I²C or SPI

The configuration memory is integrity monitored and **atomic executable** (all at once: changes of the configurations without any direct effects, the changes are executed at once by command) to the functional blocks of iC-HTP.

Integrity monitoring is implemented by a duplication of the configuration registers into a validation page (see description below) where the register are automatically copied with inverted value. Every register bit is compared with its validation copy and in case of difference, a memory error is generated and both laser channels are switched off.

Atomic appliance is achieved by latching the configuration registers. This permits a full configuration (different registers) to be made prior to apply it to the laser channels. iC-HTP has two different modes selectable by the MODE(1:0) register (addr. 0x1C).

MODE(1:0)	Addr. 0x1C; bit 1:0	R/W 01
00	Not allowed	
01	Chip set in operation mode (apply configuration, latch transparent)	
10	Chip set in configuration mode (hold previous configuration)	
11	Not allowed	

Table 81: Configuration and operation mode

In **Configuration mode**, the *configuration memory* (addr. 0x10 to 0x1F) can be written and read back to check a correct communication without changing the present configured operation state of the iC-HTP. In this mode, the memory integrity check is disabled.

iC-HTP will monitor the time elapsed in configuration mode and automatically switch the laser off if it exceeds a configuration mode timeout. The time in configuration mode must be less than 40 ms for ensuring that no configuration timeout occurs during configuration (cf. *Electrical Characteristics No. E02*). The timeout can be up to 164 ms.

When writing the configuration is completed, iC-HTP is switched to **operation mode** by writing "0b01" into the MODE register (addr. 0x1C). In **operation mode** the configuration is applied to the iC-HTP and the memory integrity check activated. In this mode configuration registers can only be read (except MODE(1:0) register, which is always accessible). Figure 22 shows the interface to memory structure.

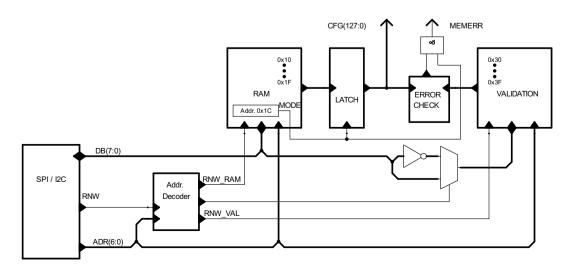


Figure 22: Interface, RAM integrity monitoring and configuration latching

Register map description

The register map consists of 64 addresses subdivided in three different pages:

- Read-only page, addr. 0x00 to 0x0F: iC-HTP status, ADC readouts, thermometer readout and chip revision.
- Configuration page (integrity monitored), readwrite registers, addr. 0x10 to 0x1F.
- Validation page, read-write registers, addr. 0x30 to 0x3F.

Read-only registers

Read-only registers are sub-divided as well into status registers (addr. 0x00 to 0x01) and measurement registers. Status registers are normally latched to 1 on events and cleared on read (see individual register description). Measurement registers are dual-port and can be accessed simultaneously with the measurements in progress. ADC1(addr. 0x03 to 0x04) and ADC2 (addr. 0x05 to 0x06) are 10 bit registers split into two 8 bit registers each and must be accessed in block mode (automatic address increment) to ensure data not changing during the read.

Configuration page (integrity monitored)

The configuration page (addr. 0x10 to 0x1F) contains the registers that control the driver. Every write operation to any of the registers of this page will be internally duplicated to the correspondent register at the validation page. After the write operation, the correspondent validation register will contain the inverted value of the configuration register.

Validation page

The validation page (addr. 0x30 to 0x3F) can be read or written normally. Only when a write procedure is made to any of the configuration registers the correspondent validation pair will be written with the inverted value of the configuration register as well.

Rev B1, Page 39/51

Haus

Both the configuration and validation pages are initialized during power-up. This event is signaled at the STATUS0 register (bit 0, INITRAM). In standby mode (NSTBY = Io) the RAM is not reset if any write command has been executed and therefore, configuration and validation pages keep the stored information and INITRAM remains unset. Entering standby mode after power-up without any write command, the RAM will be initialized again and the INITRAM bit will be set to 1 again. Any VDD power-down event signaled at the STA-TUS0 register outside the standby mode (NSTBY = hi) requires a RAM content check regardless of the state of the INITRAM bit to ensure data is not corrupted.

Possible start-up sequence:

- iC-HTP starts in operation mode with default configuration. INITRAM, PDOVBLx and PDOVDD error bits must be set in STATUSx, DISC1 (addr. 0x10, bit 3) and DISC2 (addr. 0x15, bit 3) are set to 1.
- 2. Write MODE(1:0) = "10" register (addr. 0x1C) to enable the configuration mode.
- 3. Configure the laser channels.
- 4. Read back to verify a correct data transfer.
- 5. Set the DISC1, DISC2 bits to 0 on used channels.
- Read the status registers(addr. 0x00, 0x01, 0x02) to detect possible errors and validate status. If any error exists, read again to ensure its validity.
- Write MODE(1:0) = "01" register (addr. 0x1C) to apply the configuration and enable the memory integrity check.
- 8. During operation: monitor the status registers checking for errors. The NCHK pin signals any set status bit if not masked. This pin can be used to trigger an microcontroller interrupt line.

Rev B1, Page 40/51

START-UP AND STANDBY

Setting pin NSTBY to lo iC-HTP enters standby. In standby and with no supply voltage at pin VDD and the current consumption on VB is reduced to less than 10 µA (cf. Electrical Characteristics No. 002).

After wake-up (pin NSTBY rising edge), the internal regulated supply VDD is generated again. The required time TVdd depends on the capacitor connected to the VDD pin (cf. Electrical Characteristics No. 504).

Once the VDD voltage level is correct, iC-HTP enters an offset compensation procedure regardless of the state of the laser enable pins (EC1, EC2). During this

time (Ten), EC1 and EC2 are ignored and laser cannot be switched on (cf. Electrical Characteristics No. 111). After this time (Ten), laser channels can be switched on.

The switch-on procedure needs an initial time (Tci) to reach the 80% of the target light power (in APC mode) or laser current (in ACC mode) (cf. Electrical Characteristics No. 112) and an additional time (Tcio) to reach the 99% of the value (cf. Electrical Characteristics No. 113). Figure 23 illustrates an startup example for channel 1 in iC-WK mode.

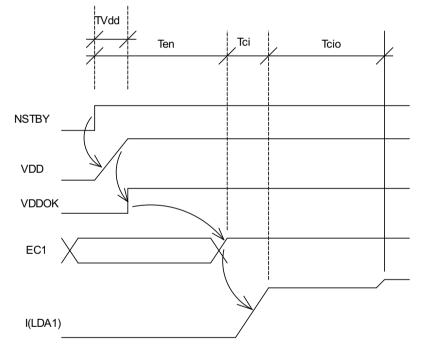


Figure 23: Startup timing diagram

Rev B1, Page 41/51

CHaus

REGISTER OVERVIEW

OVERV	/IEW									
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0x00 R	CFGTIMO	OSCERR	OVC1	OVC2	OVT	MEMERR	PDOVDD	INITRAM		
0x01 R	PDOVBL2	LDASAT2	MONC2	MAPC2	PDOVBL1	LDASAT1	MONC1	MAPC1		
0x02 R	TEMP(7:0)									
0x03 R							ADC	1(9:8)		
0x04 R		1		ADC	1(7:0)					
0x05 R							ADC	2(9:8)		
0x06 R				ADC	2(7:0)		•			
0x07 R				Not impl	emented					
				Not impl	emented					
0x0F R				CHIPR	EV(7:0)					
0x10		ADCC1(2:0)		EOC1	DISC1	DISP1	ECIE1	EACC1		
0x11		ILIM1(7:0)								
0x12	RMD1(7:0)									
0x13			S1(1:0)	REF1(9:8)						
0x14				REF	1(7:0)					
0x15		ADCC2(2:0)		EOC2	DISC2	DISP2	ECIE2	EACC2		
0x16				ILIM	2(7:0)					
0x17				RMD	2(7:0)					
0x18			COMP2(2:0)		RLDAS	S2(1:0)	REF	2(9:8)		
0x19				REF	2(7:0)					
0x1A	EXTT2	ADFNS2	CMES2	RACC2	EXTT1	ADFNS1	CMES1	RACC1		
0x1B		MERGE			RDC	D(5:0)				
0x1C			Not impl	emented			MOD	E(1:0)		
0x1D	SOSCERR	SOVC2	SOVC1	SOVT	MLDASAT2	MLDASAT1	MMONC	MOSCERR		
0x1E			CRNG	62(1:0)			CRNO	G1(1:0)		
0x1F			Rese		ctory test). Set to	o zero				
0x20				Not impl	emented					
				Not impl	emented					
0x30			Va	alidation content	for 0x10, inverte	ed				
0x31			Va	alidation content	for 0x11, inverte	ed				
0x3F			Va	alidation content	for 0x1F, inverte	ed				

Table 82: Register layout

Rev B1, Page 42/51

Haus

PARAMETERS

Register	Address	Bits	Default	Description
ADCC1	0x10	7:5	000	Configuration for ADC from channel 1
ADCC2	0x15	7:5	000	Configuration for ADC from channel 2
ADFNS1	0x1A	2	0	MDK force/sense for ADC measurement in channel 1
ADFNS2	0x1A	6	0	MDK force/sense for ADC measurement in channel 2
CMES1	0x1A	1	0	Enable current measurement for ADC in channel 1
CMES2	0x1A	5	0	Enable current measurement for ADC in channel 2
EXTT1	0x1A	3	0	Enable external transistor driver for channel 1
EXTT2	0x1A	7	0	Enable external transistor driver for channel 2
RACC1	0x1A	0	0	Channel 1 ACC resistor mirror factor
RACC2	0x1A	4	0	Channel 2 ACC resistor mirror factor
COMP1	0x13	6:4	011	Channel 1 regulator compensation current
COMP2	0x18	6:4	011	Channel 2 regulator compensation current
CRNG1	0x1E	5:4	00	Channel 1 current range
CRNG2	0x1E	1:0	00	Channel 2 current range
DISC1	0x10	3	1	Software disable for channel 1
DISC2	0x15	3	1	Software disable for channel 2
DISP1	0x10	2	0	Disable PLR for channel 1
DISP2	0x15	2	0	Disable PLR for channel 2
EACC1	0x10	0	0	Enable ACC mode for channel 1
EACC2	0x15	0	0	Enable ACC mode for channel 2
ECIE1	0x10	1	0	Enable external CI capacitor for channel 1
ECIE2	0x15	1	0	Enable external CI capacitor for channel 2
EOC1	0x10	4	1	Enable offset compensation for channel 1
EOC2	0x15	4	1	Enable offset compensation for channel 2
ILIM1	0x11	7:0	0xFF	Current limit at channel 1
ILIM2	0x16	7:0	0xFF	Current limit at channel 2
MERGE	0x1B	6	0	MERGE channels 1 and 2, controlled by channel 1
MLDASAT1	0x1D	2	1	LDASAT1 error mask
MLDASAT2	0x1D	3	1	LDASAT2 error mask
MMONC	0x1D	1	1	MONC error mask
MODE	0x1C	1:0	01	Configuration / Operation mode selection
MOSCERR	0x1D	0	0	OSCERR error mask
RDCO	0x1B	5:0	0x02	DC converter set point
REF1	0x13/0x14	9:0	0x000	Voltage reference at channel 1
REF2	0x18/0x19	9:0	0x000	Voltage reference at channel 2
RLDAS1	0x13	3:2	00	Channel 1 LDA saturation detector threshold
RLDAS2	0x18	3:2	00	Channel 2 LDA saturation detector threshold
RMD1	0x12	7:0	0xFF	Resistor at channel 1
RMD2	0x17	7:0	0xFF	Resistor at channel 2
SOSCERR	0x1D	7	0	Oscillator error simulation (watchdog timeout)
SOVC1	0x1D	5	0	Overcurrent event at channel 1 simulation
SOVC2	0x1D	6	0	Overcurrent event at channel 2 simulation
SOVT	0x1D	4	0	Overtemperature event simulation
Reserved	0x1A	7:0	0x00	Reserved
Reserved	0x1F	7:0	0x00	Reserved
			0.00	

Table 83: Parameter overview

Rev B1, Page 43/51

Haus

Register	Address	Bits	Default	Description
INITRAM	0x00	0	R/O	RAM initialized.
PDOVDD	0x00	1	R/O	Power-down event at VDD
MEMERR	0x00	2	R/O	RAM memory validation error
OVT	0x00	3	R/O	Overtemperature event
OVC2	0x00	4	R/O	Overcurrent at channel 2
OVC1	0x00	5	R/O	Overcurrent at channel 1
OSCERR	0x00	6	R/O	Oscillator error (watchdog set)
CFGTIMO	0x00	7	R/O	Configuration mode timeout event
MAPC1	0x01	0	R/O	Channel 1 current state
MONC1	0x01	1	R/O	Monitor channel 1 enabled at least once (latched)
LDASAT1	0x01	2	R/O	Channel 1 LDA saturation event
PDOVBL1	0x01	3	R/O	Power down event at VBL1 or VBL1 not equal to VBL2 in merge mode
MAPC2	0x01	4	R/O	Channel 2 current state
MONC2	0x01	5	R/O	Monitor channel 2 enabled at least once (latched)
LDASAT2	0x01	6	R/O	Channel 2 LDA saturation event
PDOVBL2	0x01	7	R/O	Power down event at VBL2 or Power down in any of VBL1 or VBL2 in merge mode

Table 84: Status overview

Register	Address	Bits	Default	Description
TEMP	0x02	7:0	R/O	Chip temperature measurement
ADC1h	0x03	1:0	R/O	Channel 1 ADC 9:8 readout
ADC1I	0x04	7:0	R/O	Channel 1 ADC 7:0 readout
ADC2h	0x05	1:0	R/O	Channel 2 ADC 9:8 readout
ADC2I	0x06	7:0	R/O	Channel 2 ADC 7:0 readout
CHIPREV	0x0F	7:0	R/O	Chip revision identification

Table 85: Measurement overview

Device identification

CHIPREV	Addr. 0x0F; bit 7:0	R
0x00 0x07	Reserved	
0x08	Initial version iC-HTP	
0x09	iC-HTP rev Z	
0x0A	iC-HTP rev Z1	
0x10 0xFF	Reserved	

Table 86: Device identification

Status

INITRAM	Addr. 0x00; bit 0	R
0	RAM not initialized since last read	
1	RAM initialized. Cleared on read	

PDOVDD	Addr. 0x00; bit 1 R	
0	VDD power down not occurred since last read	٦
1	VDD power down event has occurred. Cleared on read	
Table 88: VDD power down		

Addr 0x00: bit 2	R	

MEMERR	Addr. 0x00; bit 2	R	
0	RAM has not been changed since last validation		
1	RAM has changed and has not been validated		

Table 89: Memory validation

OVT	Addr. 0x00; bit 3	R
0	No overtemperature event has occurred since read	last
1	Overtemperature event has occurred. Cleared read	d on

Rev B1, Page 44/51

Haus

OVC2	Addr. 0x00; bit 4	R
0	No overcurrent event at channel 2 has occurred since last read	
1	Overcurrent event at channel 2 has occurred. Cleared on read	

Table 91: Overcurrent channel 2

	PDOVBL1	Addr. 0x01; bit 3 R	
	0	VBL1 power down not occurred since last read. If MERGE = 1, VBL1 voltage level equals VBL2 voltage level	
		VBL1 power down event has occurred. If MERGE = 1, VBL1 voltage level not equals VBL2 voltage level Cleared on read	

Table 98: VBL1 power down

MAPC2	Addr. 0x01; bit 4	R
0	EC2 is 0 at the precise reading moment	
1	EC2 is 1 at the precise reading moment	

Table 99: EC2 pin state

MONC2	Addr. 0x01; bit 5	R	
0	EC2 has not been set to 1 since last read		
1	EC2 has been set to 1 at least once. Cleared on read		

Table 100: Monitor channel 2

LDASAT2	Addr. 0x01; bit 6 R
0 Channel 2 LDA saturation voltage not reached	
1	Channel 2 LDA saturation voltage reached at least once. Cleared on read

Table 101: LDA2 saturation

PDOVBL2	Addr. 0x01; bit 7	R
0	VBL2 power down not occurred since last read. In MERGE = 1, VBL1 and VBL2 had no power down since last read	
1	VBL2 power down event has occurred. If MERGE 1, VBL1 or VBL2 had a power down event. Clear on read	

Table 102: VBL2 power down

TEMP	Addr. 0x02; bit 7:0	R
0x00	Minimum temperature	
0xFF	Maximum temperature	

Table 103: Chip temperature

ADC1	Addr. 0x03/04; bit 9:0	R
0x000	ADC minimum value	
0x3FF	ADC maximum value	

Table 104: ADC channel 1

ADC2	Addr. 0x05/06; bit 9:0	R
0x000	ADC minimum value	
0x3FF	ADC maximum value	

Table 105: ADC channel 2

OVC1	Addr. 0x00; bit 5	R
0	No overcurrent event at channel 1 has occurred since last read	
1	Overcurrent event at channel 1 has occurred.	

Table 92: Overcurrent channel 1

Cleared on read

OSCERR	Addr. 0x00; bit 6	R
0	Oscillator functioning OK	
1	Watchdog timeout set on oscillator failure. Cleared on read	

Table 93: Oscillator watchdog

CFGTIMO	Addr. 0x00; bit 7 F	२
0	iC-HTP not in Configuration Mode or Timeout did no happened till now	ot
1	iC-HTP in Configuration Mode and Timeout happened. Laser switched off	

Table 94: Configuration timeout

MAPC1	Addr. 0x01; bit 0	R
0	EC1 is 0 at the precise reading moment	
1	EC1 is 1 at the precise reading moment	

Table 95: EC1 pin state

MONC1	Addr. 0x01; bit 1	R
0	EC1 has not been set to 1 since last read	
1	EC1 has been set to 1 at least once. Cleared on read	

Table 96: Monitor channel 1

LDASAT1	Addr. 0x01; bit 2	R
0	Channel 1 LDA saturation voltage not reached	
1	Channel 1 LDA saturation voltage reached at least once, cleared on read	

Rev B1, Page 45/51

Haus

Channel 1 configuration registers

EACC1	Addr. 0x10; bit 0	R/W 0
0	APC mode enabled for channel 1 (ligh regulation)	nt power
1	ACC mode enabled for channel 1 (las regulation)	ser current

Table 106: Enable APC/ACC channel 1

ECIE1	Addr. 0x10; bit 1	R/W 0
0	External CI capacitor for channel 1 disconnected	
1	External CI capacitor for channel 1 connected	

Table 107: Enable external CI capacitor channel 1

DISP1	Addr. 0x10; bit 2	R/W 0
0	PLR enabled for channel 1	
1	PLR disabled for channel 1	

Table 108: Disable PLR channel 1

DISC1	Addr. 0x10; bit 3	R/W 1
0	Channel 1 can be enabled by pin EC1	
1	Channel 1 cannot be enabled by pin EC1	

Table 109: Disable channel 1

EOC1	Addr. 0x10; bit 4	R/W 1
0	Channel 1 regulator offse	t compensation disabled
1	Channel 1 regulator offse	t compensation enabled

Table 110: Enable offset compensation channel 1

ADCC1(2:0)	Addr. 0x10;	bit 7:5	R/W 000
0xx	Channel 1 ADC disa	abled	
100	Channel 1 ADC sou CMES1 = 0	rced by V	(MDK1), ADFNS1 = 1,
100	Channel 1 ADC sou CMES1 = 0	rced by V	/(PLR1), ADFNS1 = 0,
100	Channel 1 ADC sou CMES1 = 1	rced by A	CC current sensor,
101	Channel 1 ADC sou	rced by V	/(VB)
110	Channel 1 ADC sou	rced by V	/(VBL1)
111	Channel 1 ADC sou	rced by V	/(LDA1)

ILIM1	Addr. 0x11; bit 7:0	R/W 0xFF
0x00	Channel 1 overcurrent threshold s current in APC mode (EACC1 = 0) protection disabled in ACC mode	or overcurrent
	Channel 1 overcurrent threshold s $llim = (\Delta l(LDA), max \cdot n \cdot k), n$ from	
0xFF	Channel 1 overcurrent threshold se current	et to the maximum

Table 112: Overcurrent threshold configuration channel 1

RMD1	Addr. 0x12; bit 7:0	R/W 0xFF
0x00	PLR1 set to the minimum resistance	
	PLR1 resistor set to $Rmd = Rmd_0(1 n \text{ from } 0 \text{ to } 255)$	$+ \frac{\Delta Rmd(\%)}{100})^{n+1},$
0xFF	PLR1 resistor set to the maximum re	esistance

Table 113: MDK resistor channel 1

COMP1	Addr. 0x13; bit 6:4	R/W 011
000	Minimum compensation current for regulator, slower response	or the channel 1
111	Maximum compensation current f regulator, faster response	or the channel 1

Table 114: Current compensation channel 1

RLDAS1	Addr. 0x13; bit 3:2 R/W 00
00	V(LDA1) > VBL1-0.5 V sets the LDASAT1 alarm bit
01	V(LDA1) > VBL1-0.8 V sets the LDASAT1 alarm bit
10	V(LDA1) > VBL1-1.0 V sets the LDASAT1 alarm bit
11	V(LDA1) > VBL1-1.2 V sets the LDASAT1 alarm bit

Table 115: LDA saturation threshold selection channel 1

REF1	Addr. 0x13/14; bit 9:0 R/W 0x000	
0x000	Channel 1 regulator reference voltage set to minimum voltage	
	Channel 1 regulator reference voltage set to $Vref = Vref_0(1 + \frac{\Delta Vref(\%)}{100})^{n+1}$, n from 0 to 1023	
0x3FF	Channel 1 regulator reference voltage set to maximum voltage	

Table 116: Regulator voltage reference channel 1

RACC1	Addr. 0x1A; bit 0	R/W 0
0	Current range high for channel 1, Current resistor (Rsensex) set to $2k\Omega$	nt sensor
1	Current range low for channel 1, Current sensor resistor (Rsensex) set to $16k\Omega$	

Table 117: Current range configuration channel 1

Rev B1, Page 46/51

Haus

EXTT1	Addr. 0x1A; bit 3	R/W 0
0	External transistor driver for channel 1	disabled
1	External transistor driver for channel 1	enabled

Table 118: Enable external transistor driver 1

ADFNS1	Addr. 0x1A; bit 2	R/W 0
0	ADC measurement PLR1 after level shifting (sense)	
1	ADC measurement MDK1 pad (force)	

Table 119: ADC channel 1 force/sense selection

CMES1	Addr. 0x1A; bit 1	R/W 0
0	ADC current measurement disabled for channel 1	
1	ADC current measurement enabled for channel 1	

Table 120: ADC current measurement for channel 1 selection

CRNG1(1:0)	Addr. 0x1E; bit 1:0 R/W 00
00	Output current range from 0 to 750 mA, RACC1 = 0, k factor set to 750/750 = 1
01	Output current range from 0 to 100 mA, RACC1 = 0, k factor set to 100/750,=0.13
10	Output current range from 0 to 25 mA , RACC1 = 0, k factor set to $25/750 = 0.03$
11	Output current range from 0 to 9 mA, RACC1 = 0, k factor set to 9/750 = 0.012
00	Output current range from 0 to 90 mA, RACC1 = 1, k factor set to $750/750 = 1$
01	Output current range from 0 to 12 mA , RACC1 = 1, k factor set to $100/750 = 0.13$
10	Output current range from 0 to 3 mA, RACC1 = 1, k factor set to 25/750 = 0.03
11	Output current range from 0 to 1.1 mA, RACC1 = 1, k factor set to $9/750 = 0.012$

Table 121: Current range channel 1

Rev B1, Page 47/51

Haus

Channel 2 configuration registers

EACC2	Addr. 0x15; bit 0	R/W 0
0	APC mode enabled for channel 2 (ligh regulation)	t power
1	ACC mode enabled for channel 2 (lase regulation)	er current

Table 122: Enable APC/ACC channel 2

ECIE2	Addr. 0x15; bit 1	R/W 0
0	External CI capacitor for channel 2 disconnected	
1	External CI capacitor for channel 2 connected	

Table 123: Enable external CI capacitor channel 2

DISP2	Addr. 0x15; bit 2	R/W 0
0	PLR enabled for channel 2	
1	PLR disabled for channel 2	

Table 124: Disable PLR channel 2

DISC2	Addr. 0x15; bit 3	R/W 1
0	Channel 2 can be enabled by pin EC2	
1	Channel 2 cannot be enabled by pin EC2	

Table 125: Disable channel 2

EOC2	Addr. 0x15; bit 4	R/W 1
0	Channel 2 regulator offset compensation disabled	
1	Channel 2 regulator offset compensation enabled	

Table 126: Enable offset compensation channel 2

ADCC2(2:0)	Addr. 0x15;	bit 7:5	R/W 000
0xx	Channel 2 ADC disa	abled	
100	Channel 2 ADC sou CMES2 = 0	rced by \	/(MDK2), ADFNS2 = 1,
100	Channel 2 ADC sou CMES2 = 0	Irced by V	/(PLR2), ADFNS2 = 0,
100	Channel 2 ADC sou CMES2 = 1	irced by A	ACC current sensor,
101	Channel 2 ADC sou	irced by V	/(VDD)
110	Channel 2 ADC sou	rced by ∖	/(VBL2)
111	Channel 2 ADC sou	rced by ∖	/(LDA2)

Table 127: ADC channel 2 source selection

ILIM2	Addr. 0x16; bit 7:0	R/W 0xFF	
0x00	current in APC mode (EACC2 = 0)	Channel 2 overcurrent threshold set to the minimum current in APC mode (EACC2 = 0) or overcurrent protection disabled in ACC mode (EACC2 = 1)	
	Channel 2 overcurrent threshold set to $llim = (\Delta I(LDA), max \cdot n \cdot k)$, n from 0 to 255		
0xFF	Channel 2 overcurrent threshold set to the maximum current		

Table 128: Overcurrent threshold configuration channel 2

RMD2	Addr. 0x17; bit 7:0	R/W 0xFF
0x00	PLR2 resistor set to the minimum res	
	PLR2 resistor set to $Rmd = Rmd_0(1 + n \text{ from } 0 \text{ to } 255)$	$+ \frac{\Delta Rmd(\%)}{100})^{n+1},$
0xFF	PLR2 resistor set to the maximum re-	sistance

Table 129: MDK resistor channel 2

COMP2	Addr. 0x18; bit 6:4	R/W 011
000	Minimum compensation current for regulator, slower response	or the channel 2
111	Maximum compensation current for regulator, faster response	or the channel 2

Table 130: Current compensation channel 2

RLDAS2	Addr. 0x18; bit 3:2 R/W 00
00	V(LDA2) > VBL2-0.5 V sets the LDASAT2 alarm bit
01	V(LDA2) > VBL2-0.8 V sets the LDASAT2 alarm bit
10	V(LDA2) > VBL2-1.0 V sets the LDASAT2 alarm bit
11	V(LDA2) > VBL2-1.2 V sets the LDASAT2 alarm bit

Table 131: LDA saturation threshold selection channel 2

REF2	Addr. 0x18/19; bit 9:0	R/W 0x000
0x000	Channel 2 regulator reference voltage set to minimum voltage	
	Channel 2 regulator reference voltage set to $Vref = Vref_0(1 + \frac{\Delta Vref(\%)}{100})^{n+1}$, n from 0 to 1023	
0x3FF	Channel 2 regulator reference voltag maximum voltage	e set to

Table 132: Regulator voltage reference channel 2

RACC2	Addr. 0x1A; bit 4	R/W 0
0	Current range high for channel 2, Curren resistor (Rsensex) set to $2k\Omega$	it sensor
1	Current range low for channel 2, Current sensor resistor (Rsensex) set to $16 k \Omega$	

Table 133: Current range configuration channel 2

Rev B1, Page 48/51

Haus

EXTT2	Addr. 0x1A; bit 7	R/W 0
0	External transistor driver for channel 2	disabled
1	External transistor driver for channel 2	enabled

Table 134: Enable external transistor driver 2

ADFNS2	Addr. 0x1A; bit 6	R/W 0
0	ADC measurement PLR2 after level shifting (sense)	
1	ADC measurement MDK2 pad (force)	

Table 135: ADC channel 2 force/sense selection

CMES2	Addr. 0x1A; bit 5	R/W 0
0	ADC current measurement disabled for channel 2	
1	ADC current measurement enabled	for channel 2

Table 136: ADC current measurement for channel 2 selection

CRNG2(1:0)	Addr. 0x1E;	bit 5:4	R/W 00
00	Output current range k factor set to 750/7		750 mA, RACC2 = 0,
01	Output current range k factor set to 100/7		100 mA, RACC2 = 0,
10	Output current range factor set to 25/750 =		25 mA, RACC2 = 0, k
11	Output current range factor set to 9/750 =		9 mA, RACC2 = 0, k
00	Output current range factor set to 750/750		90 mA, RACC2 = 1, k
01	Output current range factor set to 100/750		12 mA, RACC2 = 1, k
10	Output current range factor set to 25/750 =		3 mA, RACC2 = 1, k
11	Output current range factor set to 9/750 =		1.1 mA, RACC2 = 1, k

Table 137: Current range channel 2

Rev B1, Page 49/51

Haus

General configuration registers

RDCO	Addr. 0x1B; bit 5:0	R/W 0x02
0x00	No current	
0x3F	Typ. 130 µA (cf. Electrical Charact	eristics No. D01)

Table 138: Digital current output register

MERGE	Addr. 0x1B; bit 6	R/W 0
0	Channel 1 and 2 operate independently	
1	Power transistor from channel 2 usable in parallel with channel 1, regulation made by channel 1	

Table 139: Channel combination

MODE(1:0)	Addr. 0x1C; bit 1:0	R/W 01
00	Not allowed	
01	Chip set in operation mode (apply configuration, latch transparent)	
10	Chip set in configuration mode (hold previous configuration)	
11	Not allowed	

Table 140: Configuration and operation mode

MOSCERR	Addr. 0x1D; bit	0 R/W 0
0	Oscillator error (watchdog) will be signaled at NCHK	
1	Oscillator error (watchdog) will not be signaled at NCHK	

Table 141: Oscillator watchdog error mask

MMONC	Addr. 0x1D; bit 1	R/W 1
0	MONC1 and MONC2 event will be signaled at NCHK	
1	MONC1 and MONC2 event will not be signaled at NCHK	

Table 142: Monitor channel 1 and 2 event mask

MLDASAT1	Addr. 0x1D; bit 2	R/W 1
0	LDASAT1 event will be signaled at NCHK	
1	LDASAT1 event will not be signaled at NCHK	

Table 143: LDA saturation error mask channel 1

MLDASAT2	Addr. 0x1D; bit 3	R/W 1
0	LDASAT2 event will be signaled at NCHK	
1	LDASAT2 event will not be signaled at NCHK	

Table 144: LDA saturation error mask channel 2

SOVT	Addr. 0x1D; bit 4	R/W 0
0	No overtemperature event is simulated	
1	Overtemperature event simulated	

Table 145: Simulate overtemperature

	SOVC1	Addr. 0x1D; bit 5	R/W 0
(0	No Overcurrent event at channel 1 is simulated	
	1	Overcurrent event at channel 1 simulated	

Table 146: Simulate overcurrent channel 1

SOVC2	Addr. 0x1D; bit 6	R/W 0
0	No overcurrent event at channel 2 is simulated	
1	Overcurrent event at channel 2 simulated	

Table 147: Simulate overcurrent channel 2

SOSCERR	Addr. 0x1D; bit 7	R/W 0
0	No oscillator error simulated	
1	Oscillator error simulated (watchdog timeout)	

Table 148: Simulate oscillator error

Rev B1, Page 50/51

Haus

REVISION HISTORY

Rel.	Rel. Date*	Chapter	Modification	Page
A1	2015-06-19		Initial release	all
Rel.	Rel. Date*	Chapter	Modification	Page
B1	2017-03-20	ELECTRICAL CHARACTERISTICS	Item 4 + 5: Turn-off threshold updated	6
		ELECTRICAL CHARACTERISTICS	Item 110: V(MDK) updated	6
		ELECTRICAL CHARACTERISTICS	Item 114: Idc(LDA) typical values on LDAx ACC mode current updated	7
	ELECTRICAL CHARACTERISTICS MICROCONTROLLER MODE	Item 202: TK added	7	
		MICROCONTROLLER MODE	Figure 10 added: NCHK behavior in MCU mode	21
		SERIAL COMMUNICATION INTERFACES	Figure 14: I2C timing updated	25
		10 BIT LINEAR A/D CONVERTER	CRNGx and Mirror factor MFACTx added	28
		REGISTER OVERVIEW	CHIPREV table updated	41
		PARAMETERS	ILIMx = 0x00 disables OVC protection in ACC mode added	43, 45
		PARAMETERS	CMESx added	43 46

iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.com/infoletter and is automatically generated and shall be sent to registered users by email. Copying – even as an excerpt – is only permitted with iC-Haus' approval in writing and precise reference to source.

The data specified is intended solely for the purpose of product description and shall represent the usual quality of the product. In case the specifications contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the specification and no liability arises insofar that the specification was from a third party view obviously not reliable. There shall be no claims based on defects as to quality in cases of insignificant deviations from the specifications or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (*Safety-Critical Applications*) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

IC-HTP DUAL CW P-TYPE LASER DIODE DRIVER Preliminon

Rev B1, Page 51/51

Haus

ORDERING INFORMATION

Туре	Package	Order Designation
iC-HTP	QFN28 5 mm x 5 mm	iC-HTP QFN28-5x5
Evaluation Board	100 mm x 80 mm eval board	iC-HTP EVAL HTP1D

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY Tel.: +49 (0) 61 35 - 92 92 - 0 Fax: +49 (0) 61 35 - 92 92 - 192 Web: http://www.ichaus.com E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners