
Variable Capacitance Diode for Electronic Tuning

FEATURES

- High capacitance ratio(n = 10min) and suitable for wide band tuner.
- Ultra small Resin Package (URP) is suitable for surface mount design.
- Low series resistance and good C-V linearity.

HVC200A

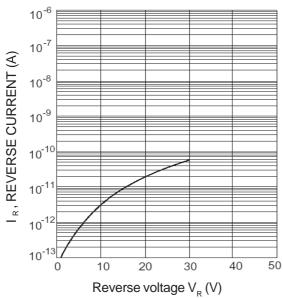
DEVICE MARKING

HVC200A = 2

ABSOLUTE MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Item	Symbol	Value	Unit
Reversevoltage	V_R	32	V
Junction temperature	T_{j}	125	°C
Storage temperature	T_{stg}	- 55 to +125	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C)


Item	Symbol	Min	Тур	Max	Unit	Test Condition
Reverse current	I _{R1}	_	_	10	nΑ	$V_R = 30V$
	I_{R2}	_	_	100		$V_R = 30V, T_A = 60^{\circ}C$
Capacitance	C ₂	27.7	_	31.8	pF	$V_R = 2V$, $f = 1 MHz$
	C_{25}	2.67	_	3.03		$V_R = 25V, f = 1 MHz$
Capacitance ratio	n	10.0	_	-	_	C ₂ / C ₂₅
Series resistance	r _s	_	_	0.70	Ω	$V_R = 5V, f = 470 \text{ MHz}$
Matching error	Δ C/C*1	_	_	2.0	%	$V_R = 2 \text{ to } 25V, f = 1 \text{ MHz}$

Note: *1. C.C system (Continuous Connected taping system) enable to make any 10 pcs of Δ C/C continuous in a reel , expect extention to another group. Calculate Matching Error,

$$\Delta C/C = \frac{(C_{\text{max}} - C_{\text{min}})}{C_{\text{min}}} \times 100 \text{ (\%)}$$

HVC200A

Reverse voltage V_R (V)
Fig.1 Reverse current Vs. Reverse voltage

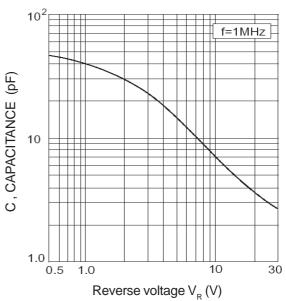


Fig.2 Capacitance Vs. Reverse voltage

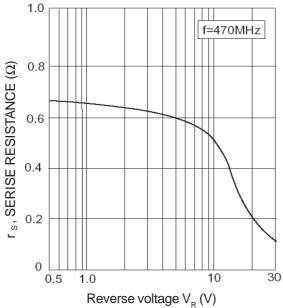


Fig.3 Series resistance Vs. Reverse voltage

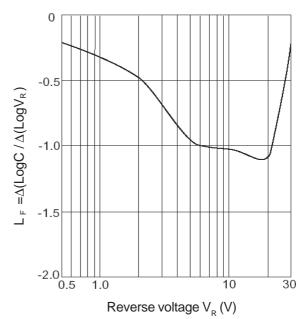


Fig.4 Linearity factor Vs. Reverse voltage