Features

- Operating voltage: $1.8 \mathrm{~V} \sim 3.5 \mathrm{~V}$
- DOUT with 38 kHz carrier for IR medium
- Low standby current
- Minimum transmission word: one word
- 455 kHz ceramic resonator or crystal
- 16-bit address codes
- 8-bit data codes
- PPM code method
- Three double-active keys
- Maximum active keys
- HT6221: 32 keys
- HT6222: 64 keys
- Low power and high noise immunity CMOS technology
- HT6221: 20-pin SOP package

HT6222: 24-pin SOP package

Applications

- Television and video cassette recorder controllers
- Burglar alarm systems
- Smoke and fire alarm systems
- Garage door controllers

General Description

The HT6221/HT6222 are CMOS LSI encoders designed for use in remote control systems. They are capable of encoding 16-bit address codes and 8-bit data codes. Each address/data input can be set to one of the two logic states, 0 and 1.

- Car door controllers
- Car alarm systems
- Security systems
- Other remote control systems

The HT6221/HT6222 contain 32 keys (K1~K32) and 64 keys (K1~K64), respectively. When one of the keys is triggered, the programmed address/data is transmitted together with the header bits via an IR (38kHz carrier) transmission medium.

Block Diagram

Pin Assignment

Pad Assignment

* The IC substrate should be connected to VDD in the PCB layout artwork.

Pad Coordinates
Unit: mil

Pad No.	\mathbf{X}	\mathbf{Y}	Pad $\mathbf{N o}$.	\mathbf{X}	\mathbf{Y}
1	-38.44	28.57	13	38.21	-32.09
2	-38.44	24.06	14	38.21	-18.90
3	-38.44	9.91	15	38.21	-10.33
4	-38.44	1.95	16	38.21	2.87
5	-38.44	-22.72	17	38.21	11.13
6	-38.44	-30.03	18	38.21	24.33
7	-37.83	-34.54	19	31.14	34.20
8	-20.31	-34.54	20	21.80	34.19
10	-15.72	-34.54	21	-22.62	34.19
11	-11.21	-34.54	23	-26.77	34.19
12	27.27	-34.54	24	-36.41	34.19

Pin Description

HT6222

Pin No.	Pin Name	I/O	Internal Connection	Description
$1 \sim 6$	R3~R8	I	CMOS IN, Pull-low	Row control for keyboard matrix, active high
7	DOUT	O	CMOS OUT	Serial data output pin, with a 38kHz carrier
8	VDD	-	-	Positive power supply, 1.8V~3.5V for normal operation
9	D7	I	CMOS IN	Most significant data bit (D7) code setting
10	X2	O	OSCILLATOR	455 kHz resonator oscillator output
11	X1	I	OSCILLATOR	455 kHz resonator oscillator input
12	VSS	-	-	Negative power supply, ground
13	LED	O	CMOS OUT	Transmission enable indicator output
$14 \sim 21$	C8~C1	I/O	CMOS IN/OUT, Pull-low	Column control for keyboard matrix
22	AIN	I	CMOS IN, Pull-high Pull-low	Low byte address codes (8 bits) scan input
$23 \sim 24$	R1~R2	I	CMOS IN, Pull-low	Row control for keyboard matrix, active high

Approximate Internal Connection Circuits
CMOS IN/OUT

Absolute Maximum Ratings

Supply Voltage .	. $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{SS}}+6 \mathrm{~V}$	Storage Temperature $-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Input Voltage.	. $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	Operating Temperature........................ $-20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Electrical Characteristic

$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		V ${ }_{\text {D }}$	Conditions				
$V_{\text {DD }}$	Operating Voltage	-	-	1.8	3	3.5	V
Istb	Standby Current	3V	Oscillator stops	-	0.1	1.0	$\mu \mathrm{A}$
IDD	Operating Current	3 V	$\mathrm{f}_{\text {OSC }}=455 \mathrm{kHz}$, no load	-	200	400	$\mu \mathrm{A}$
lOH_{1}	Output Source Current for DOUT	3V	$\mathrm{V}_{0}=2.7 \mathrm{~V}$	-2.0	-4.0	-	mA
lol1	Output Sink Current for DOUT	3V	$\mathrm{V}_{\mathrm{O}}=0.3 \mathrm{~V}$	50	100	-	$\mu \mathrm{A}$
IOH 2	Output Source Current for LED	3V	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$	-10	-60	-	$\mu \mathrm{A}$
lol2	Output Sink Current for LED	3V	$\mathrm{V}_{\mathrm{O}}=0.3 \mathrm{~V}$	1.2	2.0	-	mA
IOH	Output Source Current for C1~C8	3 V	$\mathrm{V}_{0}=2.7 \mathrm{~V}$	-0.6	-2.0	-	mA
lol3	Output Sink Current for C1~C8	3V	$\mathrm{V}_{\mathrm{O}}=0.3 \mathrm{~V}$	10	30	-	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{IH} 1}$	Input High Voltage for R1~R8	3 V	-	1.9	-	3.0	V
$\mathrm{V}_{\text {IL } 1}$	Input Low Voltage for R1~R8	3V	-	0	-	0.8	V
$\mathrm{V}_{\mathrm{IH} 2}$	Input High Voltage for C1~C8	3 V	-	1.6	-	3.0	V
$\mathrm{V}_{\text {IL2 }}$	Input Low Voltage for C1~C8	3 V	-	0	-	0.6	V
$\mathrm{V}_{\mathrm{IH} 3}$	Input High Voltage for AIN	3 V	-	1.25	-	3.0	V
$\mathrm{V}_{\text {IL3 }}$	Input Low Voltage for AIN	3 V	-	0	-	0.6	V
$\mathrm{R}_{\mathrm{PH} 1}$	Input Pull-high Resistance for AIN	3V	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	100	200	400	$\mathrm{k} \Omega$
$\mathrm{R}_{\text {PL1 }}$	Input Pull-low Resistance for AIN	3V	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$	70	150	250	$\mathrm{k} \Omega$
R ${ }_{\text {PL2 }}$	Input Pull-low Resistance for R1~R8	3V	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$	120	200	320	$\mathrm{k} \Omega$
RpL3	Input Pull-low Resistance for C1~C8	3V	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$	300	500	1500	$k \Omega$
fosc	System Frequency	-	455 kHz ceramic resonator	-	455	-	kHz

Functional Description

Keyboard Scan

The HT6221/HT6222 remain in the halt mode during the standby state (at this time, the oscillator stops, and the standby current $<1 \mu \mathrm{~A}$). The HT6221 consists of 32 active keys, and the HT6222 has 64 active keys. The keyboard forms of the HT6221/ HT6222 are shown below.

- The HT6221 keyboard form

- The HT6222 keyboard form

When one of the keys (32 or 64 keys) is triggered for over 36 ms , the oscillator is enabled and the chip is activated. If the key is pressed and held for 108ms or less, the 108ms transmission codes are enabled and comprised of a header code (9 ms), an off code (4.5 ms), low byte address codes ($9 \mathrm{~ms} \sim 18 \mathrm{~ms}$), high byte address codes ($9 \mathrm{~ms} \sim 18 \mathrm{~ms}$), 8 -bit data codes ($9 \mathrm{~ms} \sim 18 \mathrm{~ms}$), and the inverse codes of the 8 -bit data codes ($18 \mathrm{~ms} \sim 9 \mathrm{~ms}$). After the pressed key is held for 108ms, if the key is still held down, the transmission codes turn out to be a composition of header (9 ms) and off codes (2.5 ms) only.

To avoid mistakes made by keyboard scanning or simultaneous two-key inputs (except for the three double-key active functions (K21+K22, K21+K23, and K21+K24), the HT6221/HT6222 are facilitated with 36 ms starting time.

The HT6221/HT6222 also provide three double-key active functions (K21+K22, K21+K23, and K21+K24) for tape deck recording operations. The double-key operation rules are shown in timing 4 and timing 6.

Transmission Codes

The transmission codes of the HT6221/HT6222 consist of a 9 ms header code, a 4.5 ms off code, 16 -bit address codes (18ms~36ms), 9ms~18ms 8-bit data codes, and the inverse code of the 8 -bit data codes. The following is an illustration of the transmission codes:

Output format for the DOUT

The output code carrier of the DOUT pin is shown in Timing 2:

The transmission codes employ the PPM (Pulse Position Modulation) method to represent their two logic states by " 0 " (1.12 ms) and " 1 " (2.24 ms) as shown in Timing 3:

- Setting the address codes (A0~A15)

The algorithm rule of the address codes (A0~A15) can be selected by mask option.
In this case, the 16-bit on-chip MASK ROM (ROM1 and ROM2) are available, and the value of ROM1 (8 bits) and ROM2 (8 bits) are decided by one MASK LAYER. The current value of ROM1 and ROM2 are both " 00 H ". The $\mathrm{A} 0 \sim \mathrm{~A} 7$ are set by logical OR between
the external switch S0~S7 and the ROM1. The A8~A15 equal some bits inverted to A0~A7, the inversion are decided by Logical OR between the external switch S8~S15 and the ROM2.
For example:
The following is an illustration of these rules in selecting the address codes (A0~A15).

- Values of the data codes (D0~D7)

The HT6221/HT6222 contain 32 and 64 active keys, respectively. Each key corresponds to a data code. For tape deck recording, the HT6221/HT6222 provide three double-key functions. The double-key, single-key, and double-key operation rules are shown in Table 3, Table 4, Timing 4, Timing 5 and Timing 6.

Table 3: Double-key data code table

KEY	Data Codes D0~D6	Data Code D7
K21+K22	1010110	$0 / 1$
K21+K23	0110110	$0 / 1$
K21+K24	1110110	$0 / 1$

Note: D7 is defined by an external switch

Table 4: K1~K64 single-key data code table

KEY	$\begin{gathered} \hline \text { Data Codes } \\ \text { D0~D6 } \end{gathered}$	Data Code D7	KEY	$\begin{gathered} \hline \text { Data Codes } \\ \text { D0~D6 } \end{gathered}$	Data Code D7
K1	0000000	0/1	K33	0000001	0/1
K2	1000000	0/1	K34	1000001	$0 / 1$
K3	0100000	0/1	K35	0100001	0/1
K4	1100000	0/1	K36	1100001	0/1
K5	0010000	0/1	K37	0010001	0/1
K6	1010000	0/1	K38	1010001	0/1
K7	0110000	0/1	K39	0110001	0/1
K8	1110000	0/1	K40	1110001	0/1
K9	0001000	0/1	K41	0001001	$0 / 1$
K10	1001000	0/1	K42	1001001	0/1
K11	0101000	0/1	K43	0101001	0/1
K12	1101000	0/1	K44	1101001	0/1
K13	0011000	0/1	K45	0011001	0/1
K14	1011000	0/1	K46	1011001	0/1
K15	0111000	0/1	K47	0111001	0/1
K16	1111000	0/1	K48	1111001	0/1
K17	0000100	0/1	K49	0000101	0/1
K18	1000100	0/1	K50	1000101	$0 / 1$
K19	0100100	0/1	K51	0100101	0/1
K20	1100100	0/1	K52	1100101	0/1
K21	0010100	0/1	K53	0010101	0/1
K22	1010100	0/1	K54	1010101	0/1
K23	0110100	0/1	K55	0110101	0/1
K24	1110100	0/1	K56	1110101	0/1
K25	0001100	0/1	K57	0001101	0/1
K26	1001100	0/1	K58	1001101	0/1
K27	0101100	0/1	K59	0101101	0/1
K28	1101100	0/1	K60	1101101	0/1
K29	0011100	0/1	K61	0011101	0/1
K30	1011100	0/1	K62	1011101	0/1
K31	0111100	0/1	K63	0111101	0/1
K32	1111100	0/1	K64	1111101	0/1

Note: D7 is defined by an external switch
D7=0 : connect to VDD
D7=1 : connect to VSS

(a)

(b)

Note: Kn can be one of K1~K64
Valid single-key input

Note: Km can be one of K22~K24

Valid double-key input

DOUT and LED

After the transmission codes are sent, the DOUT pin generates transmission codes with a carrier, and the LED goes low to drive a transmission indicator.

Application Circuits

Application Circuit 1

Note: Typical infrared diode: EL-1L2 (KODENSHI CORP.)

Application Circuit 2

Note: Typical infrared diode: EL-1L2 (KODENSHI CORP.)

Package Information

20-pin SOP (300 mil) Outline Dimensions

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	394	-	419
B	290	-	300
C	14	-	20
C $^{\prime}$	490	-	510
D	92	-	104
E	-	50	-
F	4	-	-
G	32	-	38
α	4	-	12

24-pin SOP (300 mil) Outline Dimensions

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	394	-	419
B	290	-	300
C	14	-	20
C' $^{\prime}$	590	-	614
D	92	-	104
E	-	50	-
F	4	-	38
G	32	-	12
α	0°	-	10°

Product Tape and Reel Specifications

Reel Dimensions

SOP 20W

Symbol	Description	Dimensions in mm
A	Reel Outer Diameter	330 ± 1.0
B	Reel Inner Diameter	62 ± 1.5
C	Spindle Hole Diameter	$13.0+0.5$ -0.2
D	Key Slit Width	2.0 ± 0.5
T1	Space Between Flange	$24.8+0.3$
T2	Reel Thickness	30.2 ± 0.2

SOP 24W

Symbol	Description	Dimensions in mm
A	Reel Outer Diameter	330 ± 1.0
B	Reel Inner Diameter	62 ± 1.5
C	Spindle Hole Diameter	$13.0+0.5$
D	Key Slit Width	2.0 ± 0.5
T1	Space Between Flange	$24.8+0.3$
T2	Reel Thickness	30.2 ± 0.2

Carrier Tape Dimensions

SOP 20W

Symbol	Description	Dimensions in $\mathbf{~ m m}$
W	Carrier Tape Width	$24.0+0.3$
P	Cavity Pitch	-0.1
E	Perforation Position	12.0 ± 0.1
F	Cavity to Perforation (Width Direction)	1.75 ± 0.1
D	Perforation Diameter	11.5 ± 0.1
D1	Cavity Hole Diameter	$1.5+0.1$
P0	Perforation Pitch	$1.5+0.25$
P1	Cavity to Perforation (Length Direction)	4.0 ± 0.1
A0	Cavity Length	2.0 ± 0.1
B0	Cavity Width	10.8 ± 0.1
K0	Cavity Depth	13.3 ± 0.1
t	Carrier Tape Thickness	3.2 ± 0.1
C	Cover Tape Width	0.3 ± 0.05

SOP 24 W

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	24.0 ± 0.3
P	Cavity Pitch	12.0 ± 0.1
E	Perforation Position	1.75 ± 0.1
F	Cavity to Perforation (Width Direction)	11.5 ± 0.1
D	Perforation Diameter	$1.55+0.1$
D1	Cavity Hole Diameter	$1.5+0.25$
P0	Perforation Pitch	4.0 ± 0.1
P1	Cavity to Perforation (Length Direction)	2.0 ± 0.1
A0	Cavity Length	10.9 ± 0.1
B0	Cavity Width	15.9 ± 0.1
K0	Cavity Depth	3.1 ± 0.1
t	Carrier Tape Thickness	0.35 ± 0.05
C	Cover Tape Width	21.3

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)

7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233
Tel: 86-21-6485-5560
Fax: 86-21-6485-0313
http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office)

5/F, Unit A, Productivity Building, Cross of Science M 3rd Road and Gaoxin M 2nd Road, Science Park, Nanshan District, Shenzhen, China 518057
Tel: 86-755-8616-9908, 86-755-8616-9308
Fax: 86-755-8616-9722

Holtek Semiconductor Inc. (Beijing Sales Office)

Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031
Tel: 86-10-6641-0030, 86-10-6641-7751, 86-10-6641-7752
Fax: 86-10-6641-0125

Holtek Semiconductor Inc. (Chengdu Sales Office)
709, Building 3, Champagne Plaza, No. 97 Dongda Street, Chengdu, Sichuan, China 610016
Tel: 86-28-6653-6590
Fax: 86-28-6653-6591

Holtek Semiconductor (USA), Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538
Tel: 1-510-252-9880
Fax: 1-510-252-9885
http://www.holtek.com

Copyright © 2007 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

