

5x7 Dot Character VFD Controller & Driver

Feature

Logic voltage: 2.7V~5.5VHigh voltage: 40V (max.)

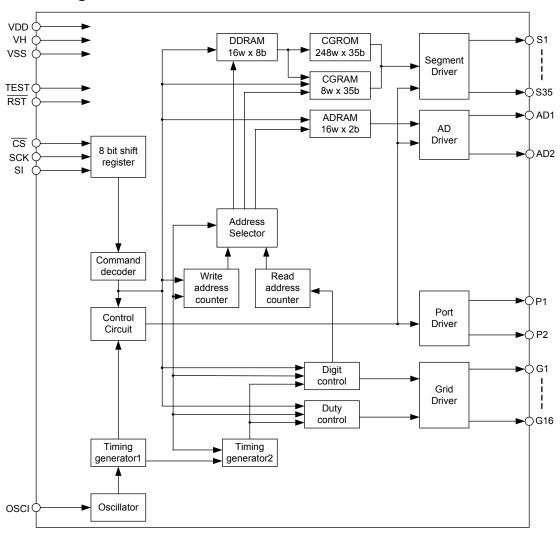
- 3-line serial interface
- Alphanumeric and symbolic display using integrated ROM
- 16 x 8-bit display data RAM (DDRAM)
- Integrated 5x7 dot ROM containing 248 character set
- 8 user-defined characters stored in character generator RAM (CGRAM)
- Additional symbol display data stored in 16 x 8-bit RAM (ADRAM)
- Display content:
 16 columns by 1 row + 32 symbols each column has 1 digit character with 2 symbols
- Supports display output: 35-segment & 16-grid
- Supports symbol output: 2-symbol & 16-grid
- Supports 2-pin general output port static operation
- · Fully integrated oscillator circuit
- 64-pin LQFP package

Applications

- · Consumer products panel function control
- Industrial measuring instrument panel function control
- Other similar application panel function control
- Suitable for POS terminals or message displays

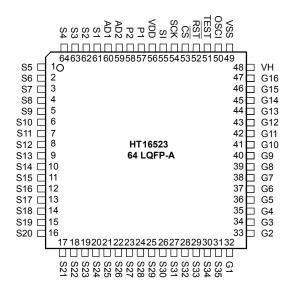
General Description

The HT16523 device is a dot matrix Vacuum Fluorescent Display, VFD, controller/driver which displays characters, numerics and symbols. Dot matrix VFD driving signals are received via a 3-line serial interface driven by an externally connected microcontroller. The display data is stored in the internal ROM and RAM for character and symbol display.


Ordering Information

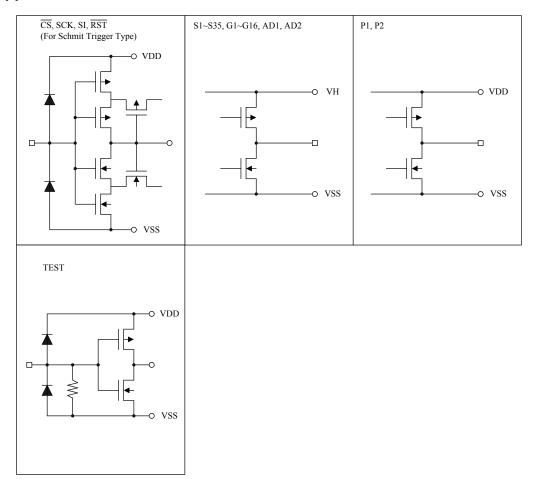
Part Number	Information
HT16523-002	64-pin LQFP package with ROM code 002
HT16523-003	64-pin LQFP package with ROM code 003

Rev. 1.00 1 January 18, 2012



Block Diagram

Pin Assignment



Pin Description

Pin Name	I/O	Description							
Power Supply Pins		·							
VDD	_	Positive power supply for logic circuits.							
VH	_	Power supply for VFD driver circuits.							
VSS	_	VSS - ground pin.							
Microcontroller Interface Pins									
CS	ı	Chip select pin When "Low", the device is active.							
SCK	ı	Serial clock input Shift clock input with data written on the SCK rising edge.							
SI	ı	Serial data input. The serial data is first shifted from LSB.							
RST	ı	Initialize all the internal registers and commands. All segments and digits are fixed at "Low" level.							
TEST	I	When "Low" or open, the device is in normal mode. When "High", the device is in test mode.							
Output Pins									
S1~S35	0	High-voltage segment output pins.							
G1~G16	0	High-voltage grid output pins.							
AD1,AD2	0	High-voltage additional data segment output pins.							
P1,P2	0	General port output. Static operation output - can drive LEDs							
Oscillator pin									
OSCI	I	Oscillator input pin Connected to an external resistor and capacitor to generate the oscillation frequency.							

Approximate Internal Connections

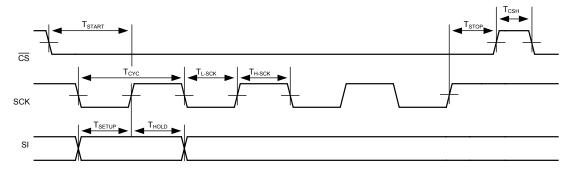
Absolute Maximum Ratings

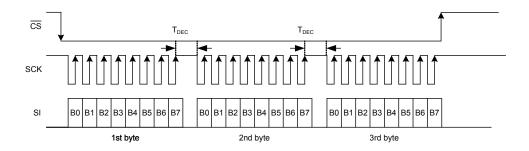
Logic Supply Voltage	. Vss-0.3V to Vss+6.0V
Driver Supply Voltage	Vss-0.3V to Vss+45V
Input Voltage	. Vss-0.3V to $V_{\rm DD}$ +0.3V
Output Voltage	. Vss-0.3V to $V_{\rm DD}$ +0.3V
Grid output current	20mA to 4mA

Segment output current	10mA to 4mA
AD output current	15mA to 4mA
General port output current	20mA to 40mA
Storage Temperature	55°C to 125°C
Operation Temperature	40°C to 85°C

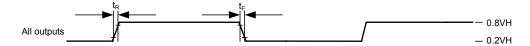
Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics


 V_H =40V, V_{SS} =0V, Ta=-40°C ~ 85°C

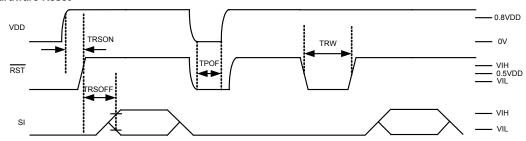

Cumb al	Davamatan		Test Condi	tion	Min	T	Mass	11
Symbol	Parameter	V _{DD}	Cond	Min.	Тур.	Max.	Unit	
V_{DD}	Logic Supply Voltage	_	-	_	2.7	5.0	5.5	V
V_H	VFD Supply Voltage	_	_		10	_	40	V
I _{DD1}	VDD Operating Current	5V	f _{osc} =2MHz, no lo Digit=1 to 16. All	output lights On,	_	_	2	mA
וטטי	V22 operating current	3V	MCU no write da P2 and P1=high	ta or command,	_	_	1	
ı	VDD Operating Current	5V	f _{osc} =2MHz, no lo Digit=1 to 16. Sto	op scan MCU no	_	-	2	mA
I _{DD2}	VDD Operating outlent	3V	write data or com P1=high	nmand, P2 and	_	_	1	IIIA
ı	VDD Standby Current	5V	Standby mode		_	2	10	μΑ
I _{STB}	VDD Standby Current	3V	Standby mode		_	1	5	μΑ
I _{H1}	VH Operating Current	_	f _{osc} =2MHz, no lo Digit=1 to 16, All MCU no write da P2 and P1=high	output lights On,	_	_	1	mA
I _{H2}	VH Operating Current	_	f _{OSC} =2MHz, no lo Digit=1 to 16, Sto write data or com P1=high	_	_	20	μА	
I _{H_STB}	VH Standby Current	_	Standby mode		_	_	20	μA
V _{IH}	High Level Input Voltage	5V 3V	CS, SCK, SI, RS	T	0.8V _{DD}	_	V _{DD}	V
V _{IL}	Low Level Input Voltage	5V 3V	CS, SCK, SI, RS	CS, SCK, SI, RST			0.2V _{DD}	V
I _{IH}	High Level Input Current	5V 3V	V _{IH} =V _{DD} , CS, SCI	K, SI, RST	_	_	1	μΑ
I _{IL}	Low Level Input Current	5V 3V	V _{IL} =0V, CS , SCK	, SI, RST	-1	_	_	μΑ
V _{OH1}		5V 3V	G1~G16, I _{OH1} =-1	5mA	37	_	_	V
V _{OH2}	Librah Laural Outrout Valtage	5V 3V	AD1, AD2, I _{OH2} =-	7mA	38	_	_	V
V _{OH3}	High Level Output Voltage	5V 3V	S1~S35, I _{OH3} =-1r	nA	38	_	_	V
	-	5V	D4 D0	I _{OH4} =-2mA	0.9V _{DD}	_	_	
V_{OH4}		3V	P1, P2	I _{OH4} =-1mA	0.9V _{DD}	-	_	V
V _{OL1}		5V 3V	G1~G16, I _{OL1} =1n	ıA	_	_	2	V
V _{OL2}		5V 3V	AD1, AD2, I _{OL2} =1	mA	_	_	2	V
V _{OL3}	Low Level Output Voltage	5V 3V	S1~S35, I _{OL3} =1m	A	_	_	2	V
	-			I _{OL4} =20mA	_		1	
V_{OL4}		5V 3V	P1, P2	I _{OL4} =10mA	_	_	1	V
R _{PD}	Pull Down Resistor	5V	TEST PIN	105-	_	50	100	ΚΩ
ירט		3V			_	100	200	ΚΩ

A.C. Characteristics


Serial Interface Timing

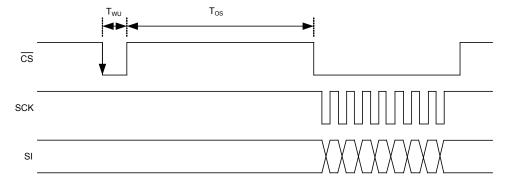
Output Timing

 V_H =40V, V_{SS} =0V, Ta =-40°C ~ 85°C


Comple al	Donomoton		Test Condition	Min	T	Mari	I I mid	
Symbol	Parameter	V _{DD}	Condition	Min.	Тур.	Max.	Unit	
£	Ossillation Francisco	5V	D4-400k0 C4-0 4vF	4.5	0	2.5	MHz	
f _{OSC}	Oscillation Frequency	3V	R1=120kΩ, C1=0.1μF	1.5	2	2.5	IVI⊓∠	
f	Frama Fraguanov	5V	Digit=1 to 16, R1=120kΩ,	183	244	305	Hz	
f _{FR}	Frame Frequency	3V	C1=0.1µF	103	244	305	П	
	Weite Coule Time		SCK	_	_	2	MHz	
T _{CYC}	Write Cycle Time	3V	SCK	_	_	2	IVITZ	
T	Low Pulse of SCK	5V	SCK	250	_	_	no	
T _{L-SCK}	Low Pulse of SCK	3V	SCK	250	_	_	ns	
_	Lligh Dulas of CCV	5V 2014		250	_	_	no	
T _{H-SCK}	High Pulse of SCK	3V	SCK	250	_	_	ns	
T	Data Catus Time	5V	COK CI	250	_	_		
T _{SETUP}	Data Setup Time	3V	SCK, SI	250	_	_	ns	
_	Data Hold Time	5V	COK CI	250	_	_	no	
T _{HOLD}	Data Hold Time	3V	SCK, SI	250	_	_	ns	
_	Command Start Wait Time	5V	COK CI	250	_	_	no	
T _{START}	Command Start Wait Time	3V	SCK, SI	250	_	_	ns	
-	Command Stan Weit Time	5V	SCK, CS	16	_	_		
T_{STOP}	Command Stop Wait Time	3V	30K, 03	16	_	_	μs	
_	CS Off Time	5V		250	_	_	no	
T _{CSH}	CS Oil Tille	3V	_	250	_	_	ns	
T	Command/Data Decode Time	5V		8	_	_	110	
T_{DEC}	Command/Data Decode Time	3V	_	8	_	_	μs	
		5V	Ci=100 pF t =20 to 200/			2		
t _R	All Outrout Class Data	3V	Ci=100 pF, t _R =20 to 80%	_	_		μs	
4	All Output Slew Rate	5V	C:=400 = E + =00 += C00/			2		
t _⊨		3V	Ci=100 pF, t _F =80 to 20%	-	_	2	μs	

Rev. 1.00 7 January 18, 2012

Reset and Wake-up Timing

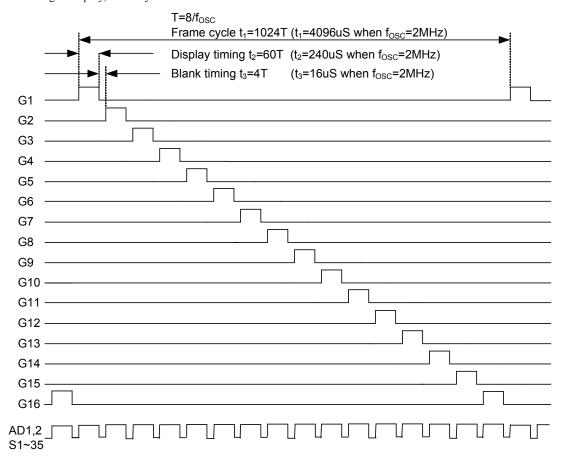

Hardware Reset

Ta=-40°C ~ 85°C

Symbol	Parameter		Test Condition	Min.	Tyrn	Max.	Unit
Symbol	Parameter	V _{DD}	Condition	IVIIII.	Тур.	IVIAX.	Onit
	Oscillator Stable Time	5V	RST signal is an external input	250	_		200
_		3V	from a microcontroller etc.	250	_	_	ns
I _{RSON}		5V	R2=1kΩ, C2=0.1μF	_	1000	_	
		3V	RZ=1KΩ, CZ=0.1μF	_	1000	_	μs
_	VDD Off Time	5V	VDD drap down to 0V	40	_	_	μs
T _{POF}		3V	VDD drop down to 0V	10	_	_	ms
т	RST Pulse Width	5V	RST signal is an external input	400	_	_	200
T _{RW}	KST Pulse Width	3V	from a microcontroller etc.	400	_	_	ns
_	CL Mait Time	5V		3	_	_	μs
T _{RSOFF}	SI Wait Time	3V	_	3	_	_	

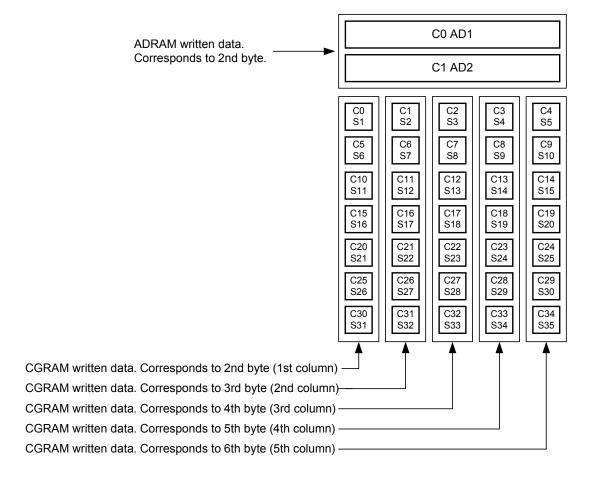
Wake-up Timing

Ta=- 40° C ~ 85° C


	Symbol	Parameter		Test Condition	Min.	Turn	May	Unit
			V _{DD}	Condition	WIIII.	Тур.	Max.	Oilit
	т	Wake-up Time	5V	_	200	_	_	ns
	I _{WU}		3V					
	Tos	Oscillation Stable Time	5V	_	1000			110
			3V		1000	_		μs

Rev. 1.00 8 January 18, 2012

Digit Output Timing


For 16-digits display, at a duty of 15/16

Segment and AD Position

Positional relationship between S1~S35 and AD1 ~ AD2 - single digit

Command Table

Function	Byte	R/W	Bit7 (MSB)	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (LSB)	Note	Default
DDRAM data write	1st	W	0	0	0	*	Х3	X2	X1	X0	Xn: Address specification for each RAM	00H
DDRAM data	2nd	W	C7	C6	C5	C4	C3	C2	C1	C0	Cn: character code specification for each RAM	_
CGRAM data write	1st	W	0	0	1	*	*	X2	X1	X0	Xn: Address specification for each RAM	20H
CGRAM Data	2nd	W	*	C30	C25	C20	C15	C10	C5	C0		_
CGRAM Data	3rd	W	*	C31	C26	C21	C16	C11	C6	C1		_
CGRAM Data	4th	W	*	C32	C27	C22	C17	C12	C7	C2	Cn: character code specification for each RAM	_
CGRAM Data	5th	W	*	C33	C28	C23	C18	C13	C8	СЗ		_
CGRAM Data	6th	W	*	C34	C29	C24	C19	C14	C9	C4		_
											1	
ADRAM data write	1st	W	0	1	0	*	Х3	X2	X1	X0	Xn: Address specification for each RAM	40H
ADRAM Data	2nd	W	*	*	*	*	*	*	C1	C0	Cn: character code specification for each RAM	_
General output port set	1st	W	0	1	1	*	*	*	P2	P1	Pn: General output port status specification	63H
		1		1	ı	I	1	1			I	
Display duty set	1st	W	1	0	0	*	*	D2	D1	D0	Dn: display duty specification	80H
		T		1	I	ı		I				
Number of digits set	1st	W	1	0	1	*	*	K2	K1	K0	Kn: Number of digits specification	A0H
All lights ON/OFF	1st	W	1	1	0	*	D	S	Н	L	D: display on/off instruction S: standby mode instruction H: all lights ON instruction L: all lights OFF instruction	C0H
TEST mode	1st	W	1	1	1	0	0	0	0	0	For HOLTEK internal testing	E0H

Command and Data Transfer Methods

Complete access to the VFD driver consists of display commands and the display data. The number of transmitted data bytes for a complete access depends upon the command and memory type as the Command Table shows. The display control commands and data are transmitted using a 3-wire serial interface from the host MCU. The following steps show how the operation of the serial interface circuitry.

- Setting the CS pin to a "Low" level will enable a data transfer.
- Data is 8-bits wide and is sequentially shifted-in on the SI pin from LSB to MSB (LSB first)
- Data shifted into the register is ready at the rising edge of the serial shift clock, SCK. If the 8-bit data is to be written in, then internal signals are automatically generated and the data will be written into the corresponding register and RAM.
- Setting the CS pin to "High" will disable the command and data transfer
- When data is written into the RAM area including DDRAM, ADRAM and CGRAM continuously, the command used to specify the RAM area is contained in the first shifted-in command byte together with the start address. Then the RAM address will be internally incremented by 1 automatically. Therefore, it is not necessary to specify the start address of the data to be written after the command byte.

Reset Function

When the \overline{RST} pin is set to "Low", the module is initialized to the following conditions:

- Address will be reset to 00H for each RAM including DDRAM, ADRAM and CGRAM
- The contents of the RAM including DDRAM, ADRAM and CGRAM are undefined.
- All general output ports go "High".
- Display duty setting will be reset to 8/16 duty (register value D2, D1, D0=0, 0, 0).
- Number of digits setting will be reset to 16 digits (register value K2, K1, K0=0, 0, 0).
- All display lights ON/OFF settings will be switched to the "display off" mode (register value D,S,H,L=0,0,0,0)
- · All segment outputs go "Low".
- · All AD outputs go "Low".
- · All grid outputs go "Low".

Note: After a power on reset, all the RAM, including DDRAM, ADRAM and CGRAM, will be cleared.

Functional Description

Timing Generation Circuit

A timing generation circuit generates timing signals for the operation of internal circuits such as the DDRAM, CGRAM, CGROM and ADRAM.

VFD Driver Circuit

The VFD driver circuit consists of 16 grid signal drivers and 35 segment signal drivers. When the number of digits are selected by a corresponding command, the required grid signal drivers automatically output drive waveforms, while the other grid signal drivers continue to output non-selection waveforms. Sending serial data is latched when the display data character pattern corresponds to the last address of the display data RAM (DDRAM).

Data Display RAM - DDRAM

The Display Data RAM (DDRAM) stores the display data in 8-bit character codes. Its extended capacity is 16x8 bits or 16 characters.

DDRAM data write command

Byte	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1st	W	0	0	0	*	X3	X2	X1	X0
2nd	W	C7	C6	C5	C4	C3	C2	C1	C0
3rd	W	C7	C6	C5	C4	C3	C2	C1	C0
4th	W	C7	C6	C5	C4	C3	C2	C1	C0
:	:	:	:	:	:	:	:	:	:

*: Don't care

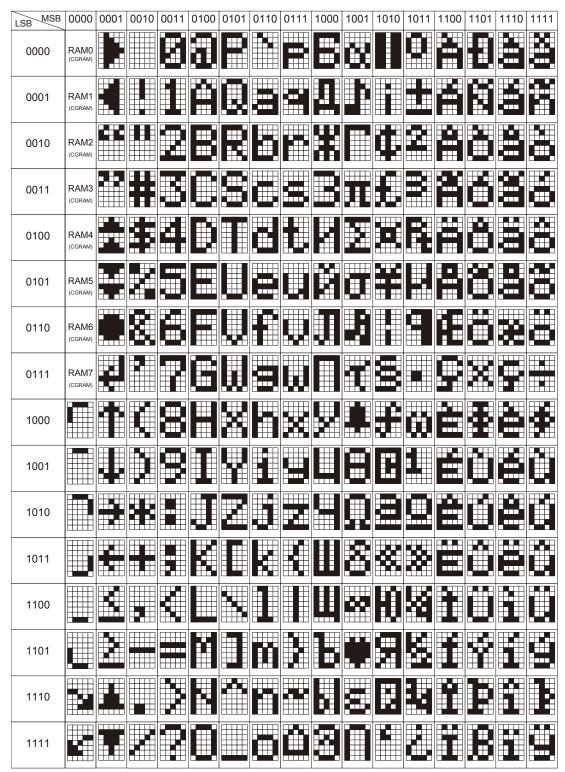
The DDRAM data write command descriptions are shown in the following:

- X3~X0: DDRAM address is for 16 digits addressed from 00H to 0FH
- C7~C0: character code of the CGROM (internal 248 characters) or CGRAM (user-defined 8 characters)
- To specify the character code of the CGROM or CGRAM continuously, only the character code needs to be specified
- The addresses of the DDRAM are automatically incremented by 1.
- The address will be wrapped around to the start address when the DDRAM data write function is successively executed and the DDRAM address is greater than the maximum available address


• Grid positions and set DDRAM addresses

HEX	Х3	X2	X1	X0	Grid Position
0	0	0	0	0	G1
1	0	0	0	1	G2
2	0	0	1	0	G3
3	0	0	1	1	G4
4	0	1	0	0	G5
5	0	1	0	1	G6
6	0	1	1	0	G7
7	0	1	1	1	G8
8	1	0	0	0	G9
9	1	0	0	1	G10
Α	1	0	1	0	G11
В	1	0	1	1	G12
С	1	1	0	0	G13
D	1	1	0	1	G14
Е	1	1	1	0	G15
F	1	1	1	1	G16

Character Generator ROM (CGROM)


- The CGROM for generating character patterns of 5x7 dots from 8-bit character codes generates 248 types of character patterns
- The character codes are shown on the following page
- · Character codes 00H to 07H are allocated to the CGRAM

Character Code Table for ROM code 002

Rev. 1.00 14 January 18, 2012

Character Code Table for ROM code 003

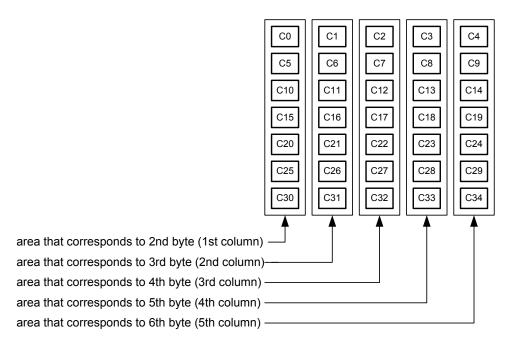
Character Generator RAM (CGRAM)

The CGRAM stores the pixel information (1=pixel on, 0=pixel off) for the eight user-defined 5x7 characters. Valid CGRAM addresses are 00H to 07H. Character codes 00H~07H are assigned to the user-defined characters.

CGRAM data write command

Byte	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1st	W	0	0	1	*	*	X2	X1	X0
2nd	W	*	C30	C25	C20	C15	C10	C5	C0
3rd	W	*	C31	C26	C21	C16	C11	C6	C1
4th	W	*	C32	C27	C22	C17	C12	C7	C2
5th	W	*	C33	C28	C23	C18	C13	C8	C3
6th	W	*	C34	C29	C24	C19	C14	C9	C4

· Don't car


The CGRAM data write command descriptions are described by the following:

- X2~X0: CGRAM addresses for 8 user-defined characters
- C34~C0: character pattern data, 35-bit outputs per digit. The relationship between the 35-bit character pattern data and the dot positions for each digit is shown in the accompanying diagram
- A character pattern stored in the CGRAM can be displayed and addressed by the character code specified in the DDRAM

- To specify character pattern data continuously, only the character pattern data needs to be specified
- The addresses of the CGRAM are automatically incremented by 1
- The address will be wrapped around to the start address when the CGRAM data write function is successively executed and the CGRAM address is greater than the maximum available address
- · CGROM addresses and set CGRAM addresses

HEX	X2	X1	X0	CGRAM	Mapping to CGROM Address
00	0	0	0	RAM00	0000000B
01	0	0	1	RAM01	00000001B
02	0	1	0	RAM02	00000010B
03	0	1	1	RAM03	00000011B
04	1	0	0	RAM04	00000100B
05	1	0	1	RAM05	00000101B
06	1	1	0	RAM06	00000110B
07	1	1	1	RAM07	00000111B

 Relationship between the CGRAM output data and the character dot position

Additional Symbol Display RAM (ADRAM)

The ADRAM stores the additional symbol information (1=symbol on, 0=symbol off) for the 16 digits. For each 5x7 digit there are two symbols displayed together with the character. The positional relationship is shown in the accompanying diagram.

ADRAM Data Write Command

Byte	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1st	W	0	1	0	*	Х3	X2	X1	X0
2nd	W	*	*	*	*	*	*	C1	C0
3rd	W	*	*	*	*	*	*	C1	C0
4th	W	*	*	*	*	*	*	C1	C0
:	:	:	:	:	:	:	:	:	:

*: Don't care

The ADRAM data write command descriptions are described by the following:

- X3~X0: ADRAM addresses for 16 digits
- C1~C0: 2 bits Symbol data for each digit
- Symbol data specified by the ADRAM is directly output regardless of the CGRAM data and the CGROM code
- The ADRAM can store 2 types of symbol pattern for each digit
- The ADRAM contents output to the terminal can be used as a cursor for each digit
- The address of the ADRAM is automatically incremented by 1
- The address will be wrapped around to the start address when the ADRAM data write function is successively executed and the ADRAM address is greater than the maximum available address
- Grid positions and ADRAM addresses

HEX	Х3	X2	X1	X0	Grid Position
0	0	0	0	0	G1
1	0	0	0	1	G2
2	0	0	1	0	G3
3	0	0	1	1	G4
4	0	1	0	0	G5
5	0	1	0	1	G6
6	0	1	1	0	G7
7	0	1	1	1	G8
8	1	0	0	0	G9
9	1	0	0	1	G10
Α	1	0	1	0	G11
В	1	0	1	1	G12
С	1	1	0	0	G13
D	1	1	0	1	G14
Е	1	1	1	0	G15
F	1	1	1	1	G16

General Output Port Command

Byte	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1st	W	0	1	1	*	*	*	P2	P1

*: Don't care

The general output port command descriptions are described by the following:

- P2, P1: general output port data
- The general output port supports 2-bit static output operation
- Used to control other I/O devices or control LEDs
- When the general output port data is set to a high level, the related pin will output a VDD voltage level while the related pin will output a GND voltage level when the general output port data is cleared to a low level
- Relationship between the general output port data and the output pin status

P2	P1	Display State of General Output Port	Comment
0	0	Sets P2 to low; Sets P1 to low	_
0	1	Sets P2 to low; Sets P1 to high	_
1	0	Sets P2 to high; Sets P1 to low	_
1	1	Sets P2 to high; Sets P1 to high	Default state when power is applied or when the RST input is at a low level.

Display Duty Set Command

Byte	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1st	W	1	0	0	*	*	D2	D1	D0

*: Don't care

The display duty set command descriptions are described by the following:

- D2~D0: Display duty selections
- The display duty adjusts the contrast in 8 stages using 3 selection bits to adjust the pulse width of the segment output.
- The relationship between the setup data and the grid duty is shown in the table.

HEX	D2	D1	D0	Grid Duty	Comment
0	0	0	0	8/16	Default state when power is applied or when RST input is at a low level.
1	0	0	1	9/16	_
2	0	1	0	10/16	_
3	0	1	1	11/16	_
4	1	0	0	12/16	_
5	1	0	1	13/16	_
6	1	1	0	14/16	_
7	1	1	1	15/16	_

Number of Digits Set Command

Byte	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1st	W	1	0	1	*	*	K2	K1	K0

*: Don't care

The number of digits set command descriptions is are described by the following:

- K2~K0: number of digit selections
- The number of display digits can be from 9 to 16 digits using the 3 selection bits.
- The relationship between setup data and the displayed grid is shown in the table.

HEX	K2	К1	K0	Number of Digits of Grid	Comment
0	0	0	0	G1 to G16	Default state when power is applied or when the RST input is at a low level.
1	0	0	1	G1 to G9	_
2	0	1	0	G1 to G10	_
3	0	1	1	G1 to G11	_
4	1	0	0	G1 to G12	_
5	1	0	1	G1 to G13	_
6	1	1	0	G1 to G14	_
7	1	1	1	G1 to G15	_

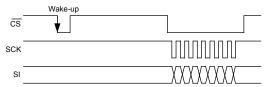
All Display Lights On/Off Set Command

Byte	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1st	W	1	1	0	*	D	S	Н	L

*: Don't care

The display ON/OFF set command descriptions are described by the following:

- S bit: S="1" is standby mode; S="0" is normal mode
- D bit: D="1" is display ON; D="0" is display OFF
- · H bit: set all lights ON
- · L bit: set all lights OFF
- When S bit = "1", the internal oscillator stops and all outputs are set to low and the general port is set to high (P2 and P1 are all at high levels)
- When S bit = "1", all registers will keep their original value
- After being woken up, the device will set the S and D bits to "0"
- The "All display lights ON" command is used primarily for display testing
- The "All display lights OFF" command is primarily used for display flashing
- The command bits, including D, H and L bits, cannot control the general output port
- The relationship between the control bits and display state of G1~G16, S1~S35 and AD1~AD2 pins is shown in the table.


D	s	Н	L	Driver Output Status	Comment
1	0	0	0	Normal display	_
1	0	0	1	Sets all segments and Sets all segments and AD to Low. All grids maintain scan General ports active AD to Low	_
1	0	1	*	Sets all segments and AD to High All grids maintain scan General ports active	_
0	0	*	*	Sets all segments and AD to Low Sets all grids to Low General ports active	Display off mode (Default state when power is applied or when the RST input is at a low level.)
*	1	*	*	Sets all segments and AD to Low. Sets all grids to Low. Set General ports to high.	Standby mode

*: Don't care

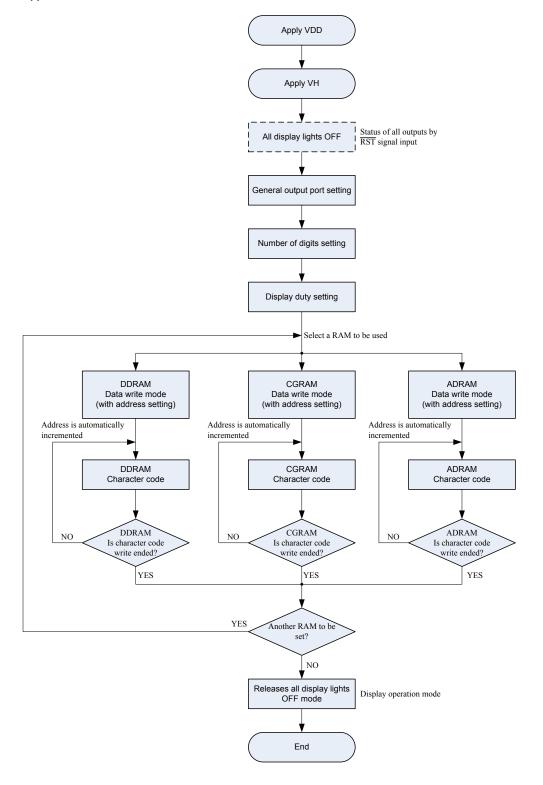
Wake-up Setting

The wake-up behavior is described by the following:

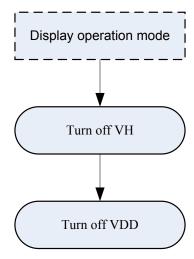
- The device is woken up when a CS low pulse is asserted i.e. when a CS signal falling edge occurs.
- The D and S control bits described in the preceding section will be set to "0" display off mode
- · The oscillator starts to oscillate after wake-up
- The VFD driver does not display until the host MCU transmits commands to it.

TEST Command

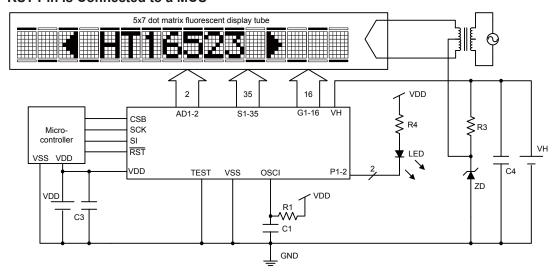
Byte	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1st	W	1	1	1	0	0	0	0	0

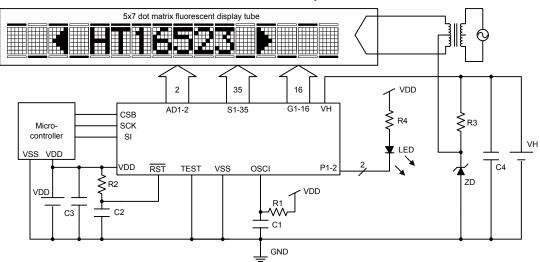

The TEST command is described by the following:

- Only when the TEST pin is high is the TEST command "E0H" is valid
- This command is used by HOLTEK for internal testing.


Setting Flowchart

Power applied included

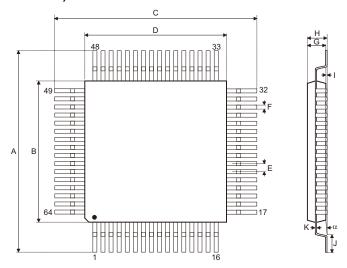

Power-off Flowchart



Application Circuit

RST Pin is Connected to a MCU

RST Pin is Connected to External Resistor and Capacitor


- Note: 1. The VDD value depends on the power supply voltage of the microcontroller used. Adjust the values of the components R2, R4, C2, C3 and C4 according to the power supply voltage used.
 - 2. The VH value depends on the fluorescent display tube used. Adjust the values of the components R3 and ZD according to the power supply voltage used.
 - 3. R1=120K Ω , C1=0.1 μ F.

Rev. 1.00 21 January 18, 2012

Package Information

64-pin LQFP (7mm x 7mm) Outline Dimensions

Symbol	Dimensions in inch		
	Min.	Nom.	Max.
А	0.350	_	0.358
В	0.272	_	0.280
С	0.350	_	0.358
D	0.272	_	0.280
Е	_	0.016	_
F	0.005	_	0.009
G	0.053	_	0.057
Н	_	_	0.063
I	0.002	_	0.006
J	0.018	_	0.030
K	0.004	_	0.008
α	0°	_	7°

Symbol	Dimensions in mm		
	Min.	Nom.	Max.
A	8.90	_	9.10
В	6.90	_	7.10
С	8.90	_	9.10
D	6.90	_	7.10
E	_	0.40	_
F	0.13	_	0.23
G	1.35	_	1.45
Н	_	_	1.60
I	0.05	_	0.15
J	0.45	_	0.75
K	0.09	_	0.20
α	0°	_	7°

Rev. 1.00 22 January 18, 2012

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan

Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)

4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan

Tel: 886-2-2655-7070 Fax: 886-2-2655-7373

Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shenzhen Sales Office)

5F, Unit A, Productivity Building, No.5 Gaoxin M 2nd Road, Nanshan District, Shenzhen, China 518057

Tel: 86-755-8616-9908, 86-755-8616-9308

Fax: 86-755-8616-9722

Holtek Semiconductor (USA), Inc. (North America Sales Office)

46729 Fremont Blvd., Fremont, CA 94538, USA

Tel: 1-510-252-9880 Fax: 1-510-252-9885 http://www.holtek.com

Copyright © 2012 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.