DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4067B

MSI
16-channel analogue multiplexer/demultiplexer

Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4067B is a 16 -channel analogue multiplexer/demultiplexer with four address inputs (A_{0} to A_{3}), an active LOW enable input (\bar{E}), sixteen independent inputs/outputs $\left(Y_{0}\right.$ to Y_{15}) and a common input/output (Z).

Fig. 1 Functional diagram.

The device contains sixteen bidirectional analogue switches, each with one side connected to an independent input/output (Y_{0} to Y_{15}) and the other side connected to the common input/output (Z).
With \bar{E} LOW, one of the sixteen switches is selected (low impedance ON -state) by A_{0} to A_{3}. All unselected switches are in the high impedance OFF-state. With $\overline{\mathrm{E}}$ HIGH all switches are in the high impedance OFF-state, independent of A_{0} to A_{3}.

The analogue inputs/outputs (Y_{0} to Y_{15} and Z) can swing between $V_{D D}$ as a positive limit and $V_{S S}$ as a negative limit. V_{DD} to V_{SS} may not exceed 15 V .

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

HEF4067BP(N):	24-lead DIL; plastic (SOT101-1)
HEF4067BD(F):	24-lead DIL; ceramic (cerdip) (SOT94)
HEF4067BT(D):	24-lead SO; plastic (SOT137-1)

PINNING

Y_{0} to Y_{15}	independent inputs/outputs
A_{0} to A_{3}	address inputs
\bar{E}	enable input (active LOW)
Z	common input/output

Fig. 2 Pinning diagram.

16-channel analogue

Fig. 3 Schematic diagram (one switch).

FUNCTION TABLE

INPUTS					CHANNEL
$\overline{\mathrm{E}}$	A_{3}	A_{2}	A_{1}	A_{0}	ON
L	L	L	L	L	$\mathrm{Y}_{0}-\mathrm{Z}$
L	L	L	L	H	$Y_{1}-Z$
L	L	L	H	L	$\mathrm{Y}_{2}-\mathrm{Z}$
L	L	L	H	H	$Y_{3}-Z$
L	L	H	L	L	$\mathrm{Y}_{4}-\mathrm{Z}$
L	L	H	L	H	$Y_{5}-Z$
L	L	H	H	L	$\mathrm{Y}_{6}-\mathrm{Z}$
L	L	H	H	H	$Y_{7}-Z$
L	H	L	L	L	$Y_{8}-Z$
L	H	L	L	H	$Y_{9}-Z$
L	H	L	H	L	$Y_{10}-Z$
L	H	L	H	H	$Y_{11}-Z$
L	H	H	L	L	$Y_{12}-Z$
L	H	H	L	H	$Y_{13}-Z$
L	H	H	H	L	$Y_{14}-Z$
L	H	H	H	H	$Y_{15}-Z$
H	X	X	X	X	none

Note

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage)
$\mathrm{X}=$ state is immaterial

16-channel analogue	HEF4067B
multiplexer/demultiplexer	MSI

Fig. 4 Logic diagram.

16-channel analogue

DC CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ \mathrm{~V} \end{gathered}$	SYMBOL	TYP.	MAX.		CONDITIONS
ON resistance	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	Ron	$\begin{array}{r} 350 \\ 80 \\ 60 \end{array}$	$\begin{array}{r} 2500 \\ 245 \\ 175 \end{array}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & V_{\text {is }}=V_{\text {SS }} \text { to } V_{D D} \\ & \text { see Fig. } 5 \end{aligned}$
ON resistance	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	Ron	115 50 40	$\begin{aligned} & 340 \\ & 160 \\ & 115 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{gathered} V_{\text {is }}=V_{\text {SS }} \\ \text { see Fig. } 5 \end{gathered}$
ON resistance	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	Ron	120 65 50	$\begin{aligned} & 365 \\ & 200 \\ & 155 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & V_{\text {is }}=V_{D D} \\ & \text { see Fig. } 5 \end{aligned}$
' \triangle ' ON resistance between any two channels	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\Delta \mathrm{R}_{\mathrm{ON}}$	25 10 5		$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & V_{\text {is }}=V_{S S} \text { to } V_{D D} \\ & \text { see Fig. } 5 \end{aligned}$
OFF-state leakage current, all channels OFF	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	lozz	-	$\begin{gathered} - \\ - \\ 1000 \end{gathered}$	nA n $n A$ $n A$	$\overline{\mathrm{E}}$ at V_{DD}
OFF-state leakage current, any channel	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	lozy	-	200	nA nA nA	$\overline{\mathrm{E}}$ at $\mathrm{V}_{\text {SS }}$

Fig. 5 Test set-up for measuring R_{ON}.

16-channel analogue

Fig. 6 Typical Ron as a function of input voltage.

NOTE

To avoid drawing $V_{D D}$ current out of terminal Z, when switch current flows into terminals Y, the voltage drop across the bidirectional switch must not exceed $0,4 \mathrm{~V}$. If the switch current flows into terminal Z, no $V_{D D}$ current will flow out of terminals Y , in this case there is no limit for the voltage drop across the switch, but the voltages at Y and Z may not exceed $V_{D D}$ or $V_{S S}$.

16-channel analogue

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD} V	TYPICAL FORMULA FOR P ($\mu \mathrm{W}$)	
Dynamic power dissipation per package (P)	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{array}{r} 1100 f_{i}+\sum\left(f_{0} C_{L}\right) \times V_{D D^{2}} \\ 5000 f_{i}+\sum\left(f_{0} C_{L}\right) \times V_{D D^{2}} \\ 13300 f_{i}+\sum\left(f_{0} C_{L}\right) \times V_{D D^{2}} \end{array}$	where $\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz) $\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz) C_{L} = load capacitance (pF) $\sum\left(f_{0} C_{L}\right)=$ sum of outputs $\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)

AC CHARACTERISTICS ${ }^{(1), ~(2)}$
$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD} V	SYMBOL	TYP.	MAX.		
Propagation delays $\mathrm{V}_{\text {is }} \rightarrow \mathrm{V}_{\mathrm{os}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 30 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 60 \\ & 25 \\ & 20 \end{aligned}$	ns ns ns	note 3
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & 25 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & 20 \end{aligned}$	ns ns ns	note 3
$\mathrm{A}_{\mathrm{n}} \rightarrow \mathrm{~V}_{\mathrm{os}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} \hline 190 \\ 70 \\ 50 \end{array}$	380 145 100	ns ns ns	note 4
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tpli	$\begin{array}{r} 175 \\ 70 \\ 50 \end{array}$	$\begin{aligned} & 345 \\ & 140 \\ & 100 \end{aligned}$	ns ns ns	note 4
Output disable times $\overline{\mathrm{E}} \rightarrow \mathrm{~V}_{\mathrm{os}}$ HIGH LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHZ }}$	$\begin{aligned} & 195 \\ & 140 \\ & 130 \\ & \hline \end{aligned}$	$\begin{array}{r} 385 \\ 280 \\ 260 \\ \hline \end{array}$	ns ns ns	note 5
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLZ }}$	$\begin{aligned} & 215 \\ & 180 \\ & 170 \end{aligned}$	$\begin{aligned} & 435 \\ & 355 \\ & 340 \end{aligned}$	ns ns ns	note 5
Output enable times $\overline{\mathrm{E}} \rightarrow \mathrm{V}_{\text {os }}$ HIGH LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PZH }}$	$\begin{array}{r} 155 \\ 70 \\ 50 \end{array}$	$\begin{aligned} & 315 \\ & 135 \\ & 100 \end{aligned}$	ns ns ns	note 5
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PZL }}$	$\begin{array}{r} 170 \\ 70 \\ 50 \\ \hline \end{array}$	$\begin{aligned} & 340 \\ & 140 \\ & 100 \end{aligned}$	ns ns ns	note 5

16-channel analogue

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	V V	SYMBOL	TYP. MAX.		
Distortion, sine-wave	5		0,25	$\%$	
response	10		0,04	$\%$	note 6
	15		0,04	$\%$	
Crosstalk between	5		-	MHz	
any two channels	10		1	MHz	note 7
	15		-	MHz	
Crosstalk; enable	5		-	mV	
or address input	10		50	mV	note 8
to output	15		-	mV	
OFF-state	5		-	MHz	
feed-through	10		1	MHz	note 9
	15		-	MHz	
ON-state frequency	5		13	MHz	
response	10		40	MHz	note 10
	15		70	MHz	

Notes

1. $V_{\text {is }}$ is the input voltage at a Y or Z terminal, whichever is assigned as input.
2. $V_{o s}$ is the output voltage at a Y or Z terminal, whichever is assigned as output.
3. $R_{L}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{S S} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ to $\mathrm{V}_{\mathrm{SS}} ; \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{SS}} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}}$ (square-wave); see Fig.7.
4. $R_{L}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ to $\mathrm{V}_{\mathrm{SS}} ; \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{SS}} ; \mathrm{A}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}}$ (square-wave); $\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}}$ and R_{L} to V_{SS} for $t_{P L H} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{SS}}$ and R_{L} to $V_{D D}$ for $t_{P H L}$; see Fig.7.
5. $R_{L}=10 \mathrm{k} \Omega ; C_{L}=50 \mathrm{pF}$ to $\mathrm{V}_{\mathrm{SS}} ; \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{DD}}$ (square-wave);
$V_{\text {is }}=V_{D D}$ and R_{L} to $V_{S S}$ for $t_{P H Z}$ and $t_{P Z H}$; $V_{\text {is }}=V_{S S}$ and R_{L} to $V_{D D}$ for $t_{\text {PLZ }}$ and $t_{P z L}$; see Fig.7.
6. $R_{L}=10 \mathrm{k} \Omega ; C_{L}=15 \mathrm{pF}$; channel $\mathrm{ON} ; \mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}(\mathrm{p}-\mathrm{p})}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$); $\mathrm{f}_{\text {is }}=1 \mathrm{kHz}$; see Fig. 8 .
7. $R_{L}=1 \mathrm{k} \Omega ; \mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}(\mathrm{p}-\mathrm{p})}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$); $20 \log \frac{V_{\text {os }}}{V_{\text {is }}}=-50 \mathrm{~dB}$; see Fig.9.
8. $R_{L}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{S S} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ to $\mathrm{V}_{\mathrm{SS}} ; \overline{\mathrm{E}}$ or $\mathrm{A}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}}$ (square-wave); crosstalk is $\left|\mathrm{V}_{\mathrm{os}}\right|$ (peak value); see Fig.7.
9. $R_{L}=1 \mathrm{k} \Omega ; C_{L}=5 p F$; channel OFF; $\mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}(\mathrm{p}-\mathrm{p})}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$); $20 \log \frac{V_{\text {os }}}{V_{\text {is }}}=-50 \mathrm{~dB}$; see Fig.8.
10. $R_{L}=1 \mathrm{k} \Omega ; C_{L}=5 \mathrm{pF}$; channel $O N ; \mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}(\mathrm{p}-\mathrm{p})}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$); $20 \log \frac{V_{\text {os }}}{V_{\text {is }}}=-3 \mathrm{~dB}$; see Fig. 8 .

16-channel analogue

Fig. 7

Fig. 8

(a)

Fig. 9

APPLICATION INFORMATION

Some examples of applications for the HEF4067B are:

- Analogue multiplexing and demultiplexing.
- Digital multiplexing and demultiplexing.
- Signal gating.

NOTE

If break before make is needed, then it is necessary to use the enable input.

