DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4053B MSI
 Triple 2-channel analogue multiplexer/demultiplexer

Product specification
File under Integrated Circuits, IC04

PHILIPS

Triple 2-channel analogue multiplexer/demultiplexer

DESCRIPTION

The HEF4053B is a triple 2-channel analogue multiplexer/demultiplexer with a common enable input ($\overline{\mathrm{E}}$). Each multiplexer/demultiplexer has two independent inputs/outputs (Y_{0} and Y_{1}), a common input/output (Z), and select inputs (S_{n}). Each also contains two-bidirectional analogue switches, each with one side connected to an independent input/output (Y_{0} and Y_{1}) and the other side connected to a common input/output (Z).

With $\overline{\mathrm{E}}$ LOW, one of the two switches is selected (low impedance ON-state) by S_{n}. With $\overline{\mathrm{E}}$ HIGH, all switches are in the high impedance OFF-state, independent of S_{A} to S_{C}.
$V_{D D}$ and $V_{S S}$ are the supply voltage connections for the digital control inputs (S_{A} to S_{C} and $\overline{\mathrm{E}}$).
The $V_{D D}$ to $V_{S S}$ range is 3 to 15 V . The analogue inputs/outputs ($\mathrm{Y}_{0}, \mathrm{Y}_{1}$ and Z) can swing between V_{DD} as a positive limit and V_{EE} as a negative limit. $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$ may not exceed 15 V .

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to $\mathrm{V}_{\text {SS }}$ (typically ground).

Fig. 1 Functional diagram.

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications

Triple 2-channel analogue

Fig. 2 Pinning diagram.

HEF4053BP(N): 16-lead DIL; plastic
(SOT38-1)
HEF4053BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)
HEF4053BT(D): 16-lead SO; plastic
(SOT109-1)
(): Package Designator North America

PINNING

$Y_{0 A}$ to $Y_{O C}$	independent inputs/outputs
$Y_{1 A}$ to $Y_{1 C}$	independent inputs/outputs
S_{A} to S_{C}	select inputs
\bar{E}	enable input (active LOW)
Z_{A} to Z_{C}	common inputs/outputs

FUNCTION TABLE

INPUTS		CHANNEL
ON		
\bar{E}	$\mathbf{S}_{\boldsymbol{n}}$	
L	L	$\mathrm{Y}_{0 \mathrm{n}}-\mathrm{Z}_{\mathrm{n}}$
L	H	$\mathrm{Y}_{1 \mathrm{n}}-\mathrm{Z}_{\mathrm{n}}$
H	X	none

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)

L = LOW state (the less positive voltage)
$\mathrm{X}=$ state is immaterial

Fig. 3 Schematic diagram (one switch).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage (with reference to V_{DD}) $\quad \mathrm{V}_{\mathrm{EE}} \quad-18$ to $+0,5 \mathrm{~V}$

Note

1. To avoid drawing $V_{D D}$ current out of terminal Z, when switch current flows into terminals Y, the voltage drop across the bidirectional switch must not exceed $0,4 \mathrm{~V}$. If the switch current flows into terminal Z , no V_{DD} current will flow out of terminals Y , in this case there is no limit for the voltage drop across the switch, but the voltages at Y and Z may not exceed V_{DD} or V_{EE}.

Triple 2-channel analogue

Fig. 4 Logic diagram.

Triple 2-channel analogue multiplexer/demultiplexer

DC CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

	$\underset{\mathrm{V}}{\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}}$	SYMBOL	TYP.	MAX.		CONDITIONS
ON resistance	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	Ron	$\begin{array}{r} 350 \\ 80 \\ 60 \end{array}$	$\begin{array}{r} 2500 \\ 245 \\ 175 \end{array}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & V_{\text {is }}=0 \text { to } V_{D D}-V_{E E} \\ & \text { see Fig. } 6 \end{aligned}$
ON resistance	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	Ron	$\begin{array}{r} 115 \\ 50 \\ 40 \end{array}$	$\begin{aligned} & 340 \\ & 160 \\ & 115 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & V_{\text {is }}=0 \\ & \text { see Fig. } 6 \end{aligned}$
ON resistance	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	Ron	$\begin{array}{r} 120 \\ 65 \\ 50 \end{array}$	$\begin{aligned} & 365 \\ & 200 \\ & 155 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & V_{\text {is }}=V_{D D}-V_{\text {EE }} \\ & \text { see Fig. } 6 \end{aligned}$
' \triangle ' ON resistance between any two channels	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\triangle \mathrm{R}_{\text {ON }}$	$\begin{array}{r} 25 \\ 10 \\ 5 \end{array}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & V_{\text {is }}=0 \text { to } V_{D D}-V_{E E} \\ & \text { see Fig. } 6 \end{aligned}$
OFF-state leakage current, all channels OFF	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	lozz		$\begin{gathered} - \\ - \\ 1000 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	$\overline{\mathrm{E}}$ at V_{DD}
OFF-state leakage current, any channel	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	lozy	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{r} - \\ - \\ 200 \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	$\overline{\mathrm{E}}$ at $\mathrm{V}_{\text {Ss }}$

Fig. 5 Operating area as a function of the supply voltages.

Triple 2-channel analogue

Fig. 6 Test set-up for measuring R_{ON}.

Triple 2-channel analogue

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	$\mathbf{V}_{\mathbf{D D}}$ \mathbf{V}	TYPICAL FORMULA FOR P $(\mu \mathbf{W})$	
Dynamic power	5	$2500 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$11500 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$29000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
			$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)
			$\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	TYP.	MAX		
Propagation delays $V_{\text {is }} \rightarrow V_{\text {os }}$ HIGH to LOW LOW to HIGH	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 10 \\ 5 \\ 5 \end{array}$			note 1
	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	tplh	$\begin{array}{r} 15 \\ 5 \\ 5 \end{array}$		ns ns ns	note 1
$\mathrm{S}_{\mathrm{n}} \rightarrow \mathrm{~V}_{\mathrm{os}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 200 \\ 85 \\ 65 \end{array}$	$\begin{aligned} & 400 \\ & 170 \\ & 130 \end{aligned}$	ns ns ns	note 2
LOW to HIGH	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\mathrm{t}_{\text {PLH }}$	$\begin{array}{r} 275 \\ 100 \\ 65 \end{array}$	$\begin{aligned} & 555 \\ & 200 \\ & 130 \end{aligned}$	ns ns ns	note 2
Output disable times $\overline{\mathrm{E}} \rightarrow \mathrm{~V}_{\mathrm{os}}$ HIGH LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PHZ }}$	$\begin{aligned} & 200 \\ & 115 \\ & 110 \end{aligned}$	$\begin{aligned} & 400 \\ & 230 \\ & 220 \end{aligned}$	ns ns ns	note 3
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLZ }}$	$\begin{aligned} & 200 \\ & 120 \\ & 110 \end{aligned}$	$\begin{aligned} & 400 \\ & 245 \\ & 215 \end{aligned}$	ns ns ns	note 3
Output enable times $\overline{\mathrm{E}} \rightarrow \mathrm{V}_{\text {os }}$ HIGH LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PZH }}$	$\begin{array}{r} 260 \\ 95 \\ 65 \end{array}$	$\begin{aligned} & 525 \\ & 190 \\ & 130 \end{aligned}$	ns ns ns	note 3
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PZL }}$	$\begin{array}{r} 280 \\ 105 \\ 70 \end{array}$	$\begin{aligned} & 565 \\ & 205 \\ & 140 \end{aligned}$	ns ns ns	note 3

Triple 2-channel analogue

| | $\mathbf{V}_{\text {DD }}$ | | SYMBOL | TYP. | MAX. |
| :--- | ---: | :--- | ---: | :--- | :--- |$]$

Notes

$V_{\text {is }}$ is the input voltage at a Y or Z terminal, whichever is assigned as input.
$V_{\text {os }}$ is the output voltage at a Y or Z terminal, whichever is assigned as output.

1. $R_{L}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{EE}} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ to $\mathrm{V}_{\mathrm{EE}} ; \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{SS}} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}}$ (square-wave); see Fig.8.
2. $R_{L}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ to $\mathrm{V}_{\mathrm{EE}} ; \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{SS}} ; \mathrm{S}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}}$ (square-wave); $\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}}$ and R_{L} to V_{EE} for $t_{P L H} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{E E}$ and R_{L} to $V_{D D}$ for $t_{P H L}$; see Fig.8.
3. $R_{L}=10 \mathrm{k} \Omega ; C_{L}=50 \mathrm{pF}$ to $\mathrm{V}_{\mathrm{EE}} ; \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{DD}}$ (square-wave);
$V_{\text {is }}=V_{D D}$ and R_{L} to $V_{E E}$ for $t_{P H Z}$ and $t_{P Z H}$;
$V_{\text {is }}=V_{E E}$ and R_{L} to $V_{D D}$ for $t_{P L Z}$ and $t_{P z L}$; see Fig.8.
4. $R_{L}=10 \mathrm{k} \Omega ; C_{L}=15 \mathrm{pF}$; channel $\mathrm{ON} ; \mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}(\mathrm{p}-\mathrm{p})}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$); $\mathrm{f}_{\text {is }}=1 \mathrm{kHz}$; see Fig. 9 .
5. $R_{L}=1 \mathrm{k} \Omega ; \mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}(\mathrm{p}-\mathrm{p})}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$); $20 \log \frac{V_{\text {os }}}{V_{\text {is }}}=-50 \mathrm{~dB}$; see Fig. 10.
6. $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{EE}} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ to $\mathrm{V}_{\mathrm{EE}} ; \overline{\mathrm{E}}$ or $\mathrm{S}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}}$ (square-wave); crosstalk is $\left|\mathrm{V}_{\mathrm{os}}\right|$ (peak value); see Fig. 8.
7. $R_{L}=1 \mathrm{k} \Omega ; C_{L}=5 \mathrm{pF}$; channel OFF; $\mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}(\mathrm{p}-\mathrm{p})}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$); $20 \log \frac{V_{\text {os }}}{V_{\text {is }}}=-50 \mathrm{~dB}$; see Fig. 9.
8. $R_{L}=1 \mathrm{k} \Omega ; C_{L}=5 \mathrm{pF}$; channel $\mathrm{ON} ; \mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}(\mathrm{p}-\mathrm{p})}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$); $20 \log \frac{V_{\text {os }}}{V_{\text {is }}}=-3 \mathrm{~dB}$; see Fig. 9.

Triple 2-channel analogue

Fig. 8

Fig. 9

Fig. 10

APPLICATION INFORMATION

Some examples of applications for the HEF4053B are:

- Analogue multiplexing and demultiplexing.
- Digital multiplexing and demultiplexing.
- Signal gating.

NOTE

If break before make is needed, then it is necessary to use the enable input.

