DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4035B MSI
 4-bit universal shift register

Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4035B is a fully synchronous edge-triggered 4-bit shift register with a clock input (CP), four synchronous parallel data inputs (P_{0} to P_{3}), two synchronous serial data inputs (J, \bar{K}), a synchronous parallel enable input (PE), buffered parallel outputs from all 4-bit positions $\left(\mathrm{O}_{0}\right.$ to $\left.\mathrm{O}_{3}\right)$, a true/complement input ($\mathrm{T} / \overline{\mathrm{C}}$) and an overriding asynchronous master reset input (MR). Each register is of a D-type master-slave flip-flop.

Operation is synchronous (except for MR) and is edge-triggered on the LOW to HIGH transition of the CP input. When PE is HIGH, data is loaded into the register from P_{0} to P_{3} on the LOW to HIGH transition of CP.

When PE is LOW, data is shifted into the first register position from J and $\overline{\mathrm{K}}$ and all the data in the register is shifted one position to the right on the LOW to HIGH transition of CP. D-type entry is obtained by interconnecting J and $\overline{\mathrm{K}}$. When $\mathrm{J}=\mathrm{HIGH}$ and $\overline{\mathrm{K}}=\mathrm{LOW}$ the first stage is in the toggle mode. When $\mathrm{J}=\mathrm{LOW}$ and $\overline{\mathrm{K}}=$ HIGH the first stage is in the hold mode.

The outputs $\left(\mathrm{O}_{0}\right.$ to $\left.\mathrm{O}_{3}\right)$ are either inverting or non-inverting, depending on $\mathrm{T} / \overline{\mathrm{C}}$ state. With $\mathrm{T} / \overline{\mathrm{C}} \mathrm{HIGH}, \mathrm{O}_{0}$ to O_{3} are non-inverting (active HIGH) and when $\mathrm{T} / \overline{\mathrm{C}}$ is LOW, O_{0} to O_{3} are inverting (active LOW).

A HIGH on MR resets all four bit positions (O_{0} to $\mathrm{O}_{3}=\mathrm{LOW}$ if $\mathrm{T} / \overline{\mathrm{C}}=\mathrm{HIGH}, \mathrm{O}_{0}$ to $\mathrm{O}_{3}=\mathrm{HIGH}$ if $\mathrm{T} / \overline{\mathrm{C}}=\mathrm{LOW}$) independent of all other input conditions.
Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

Fig. 1 Functional diagram.

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications
3

Fig. 2 Logic diagram

4-bit universal shift register

Fig. 3 Pinning diagram.

PINNING

PE parallel enable input
P_{0} to P_{3} parallel data inputs
$J \quad$ first stage J-input (active HIGH)
$\overline{\mathrm{K}} \quad$ first stage K-input (active LOW)
CP clock input (LOW to HIGH edge-triggered)
T/C true/complement input
MR master reset input
O_{0} to O_{3}
buffered parallel outputs

FUNCTION TABLES

Serial operation first stage

INPUTS				OUTPUT	MODE OF OPERATION
CP	J	$\overline{\mathbf{K}}$	MR	O_{0+1}	
\digamma	H	H	L	H	D flip-flop
Γ	L	L	L	L	D flip-flop
Γ	H	L	L	$\overline{\mathrm{O}}_{0}$	toggle
J	L	H	L	O_{0}	no change
X	X	X	H	L	reset

Note

1. $\mathrm{T} / \overline{\mathrm{C}}=\mathrm{HIGH} ; \mathrm{PE}=\mathrm{LOW}$

HEF4035BP(N): 16-lead DIL; plastic
(SOT38-1)
HEF4035BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)
HEF4035BT(D): 16-lead SO; plastic
(SOT109-1)
(): Package Designator North America

Parallel operation

CP	INPUTS				OUTPUTS			
	$\mathbf{P}_{\mathbf{0}}$	$\mathbf{P}_{\mathbf{1}}$	$\mathrm{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{3}}$	$\mathbf{O}_{\mathbf{0}}$	$\mathbf{O}_{\mathbf{1}}$	$\mathbf{O}_{\mathbf{2}}$	$\mathbf{O}_{\mathbf{3}}$
Γ	H	H	H	H	H	H	H	H
Γ	L	L	L	L	L	L	L	L

Notes

1. $\mathrm{T} / \overline{\mathrm{C}}=\mathrm{HIGH} ; \mathrm{PE}=\mathrm{HIGH} ; \mathrm{MR}=\mathrm{LOW}$
$\Gamma=$ positive-going transition
$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
L = LOW state (the less positive voltage)
$X=$ state is immaterial

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD}	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{CP} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW LOW to HIGH	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$t_{\text {PHL }}$	$\begin{aligned} & 170 \\ & 70 \\ & 50 \end{aligned}$	$\begin{aligned} & 340 \\ & 140 \\ & 100 \end{aligned}$	ns ns ns	$\begin{aligned} & 143 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ & 59 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 42 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	$t_{\text {PLH }}$	$\begin{aligned} & \hline 150 \\ & 65 \\ & 50 \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 130 \\ & 100 \end{aligned}$	ns ns ns	$\begin{aligned} & 123 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 54 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 42 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{MR} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 115 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 230 \\ & 100 \\ & 80 \end{aligned}$	ns ns ns	$\begin{aligned} & 88 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$t_{\text {PLH }}$	$\begin{aligned} & 115 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 230 \\ & 100 \\ & 80 \\ & \hline \end{aligned}$	ns ns ns	$\begin{aligned} & 88 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
$\mathrm{T} / \overline{\mathrm{C}} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	$t_{\text {PHL }}$	$\begin{aligned} & \hline 105 \\ & 50 \\ & 35 \end{aligned}$	$\begin{aligned} & \hline 210 \\ & 100 \\ & 70 \end{aligned}$	ns ns ns	$\begin{aligned} & 78 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$t_{\text {PLH }}$	$\begin{aligned} & 85 \\ & 45 \\ & 35 \end{aligned}$	$\begin{aligned} & 170 \\ & 90 \\ & 70 \end{aligned}$	ns ns ns	$\begin{aligned} & 58 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 34 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	${ }_{\text {t }}^{\text {THL }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 60 \\ & 40 \end{aligned}$	ns ns ns	$\begin{array}{\|lll} \hline 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ \hline \end{array}$
LOW to HIGH	$\begin{gathered} \hline 5 \\ 10 \\ 15 \end{gathered}$	${ }_{\text {t }}^{\text {tiH }}$	$\begin{aligned} & \hline 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 120 \\ & 60 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{array}{\|ll} \hline 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ \hline \end{array}$

	$\mathbf{V}_{\text {DD }}$	TYPICAL FORMULA FOR P $(\mu \mathrm{W})$	
Vynamic power	5	$1000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$6000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$20000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
			$\mathrm{C}_{\mathrm{L}}=$ load cap. (pF)
			$\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

G661 Kıenuer

Fig. 4 Waveforms showing minimum clock pulse width, set-up times, hold times. Set-up times and hold times are shown as positive values but may be specified as negative values.

Fig. 5 Waveforms showing minimum MR pulse width and MR recovery time.

APPLICATION INFORMATION

Some examples of applications for the HEF4035B are:

- Counters, registers, arithmetic-unit registers, shift-left/shift-right registers.
- Serial-to-parallel/parallel-to-serial conversions.
- Sequence generation.
- Control circuits.
- Code conversion.

Fig. 6 Shift-left/shift-right register.

