DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4029B MSI

Synchronous up/down counter, binary/decade counter

File under Integrated Circuits, IC04

PHILIPS

Synchronous up/down counter, binary/decade counter

DESCRIPTION

The HEF4029B is a synchronous edge-triggered up/down 4-bit binary/BCD decade counter with a clock input (CP), an active LOW count enable input ($\overline{\mathrm{CE}}$), an up/down control input (UP/DN), a binary/decade control input (BIN/DEC), an overriding asynchronous active HIGH parallel load input (PL), four parallel data inputs (P_{0} to P_{3}), four parallel buffered outputs $\left(\mathrm{O}_{0}\right.$ to $\left.\mathrm{O}_{3}\right)$ and an active LOW terminal count output ($\overline{\mathrm{TC}}$).

Fig. 1 Functional diagram.

HEF4029BP(N):	16-lead DIL; plastic
	(SOT38-1)
HEF4029BD(F):	16-lead DIL; ceramic (cerdip)
	(SOT74)
HEF4029BT(D):	16-lead SO; plastic
	(SOT109-1)
(): Package Designator North America	

Information on P_{0} to P_{3} is asynchronously loaded into the counter while PL is HIGH, independent of CP.

The counter is advanced one count on the LOW to HIGH transition of CP when $\overline{\mathrm{CE}}$ and PL are LOW. The $\overline{\mathrm{TC}}$ signal is normally HIGH and goes LOW when the counter reaches its maximum count in the UP mode, or the minimum count in the DOWN mode provided $\overline{\mathrm{CE}}$ is LOW.

Fig. 2 Pinning diagram.

PINNING

PL	parallel load input
P_{0} to P_{3}	parallel data inputs
$\mathrm{BIN} / \overline{\mathrm{DEC}}$	binary/decade control input
$\mathrm{UP} / \overline{\mathrm{DN}}$	up/down control input
$\overline{\mathrm{CE}}$	count enable input (active LOW)
CP	clock input (LOW to HIGH, edge triggered)
O_{0} to O_{3}	buffered parallel outputs
$\overline{\mathrm{TC}}$	terminal count output (active LOW)

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications

Synchronous up/down counter,

Fig. 3 Logic diagram (continued in Fig.4).
Synchronous up/down counter, HEF4029B binary/decade counter

Fig. 4 Logic diagram (continued from Fig.3).

Synchronous up/down counter,
 HEF4029B binary/decade counter

FUNCTION TABLE

PL	BIN/ $\overline{\text { DEC }}$	UP/DN	$\overline{\mathbf{C E}}$	CP	MODE
H	X	X	X	X	parallel load ($\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{O}_{\mathrm{n}}$)
L	X	X	H	X	no change
L	L	L	L	Γ	count-down, decade
L	L	H	L	Γ	count-up, decade
L	H	L	L	Γ	count-down, binary
L	H	H	L	Γ	count-up, binary

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage)
$\mathrm{X}=$ state is immaterial
$\Gamma=$ positive-going clock pulse edge

Fig. 5 State diagram; BIN/ $\overline{\mathrm{DEC}}=\mathrm{LOW}$.

Synchronous up/down counter,

Fig. 6 State diagram; BIN $/ \overline{D E C}=H I G H$.

Logic equation for terminal count:
$\mathrm{TC}=\overline{\overline{\mathrm{CE}}\left(\mathrm{BIN} / \overline{\mathrm{DEC}} \cdot \mathrm{UP} / \overline{\mathrm{DN}} \bullet \mathrm{O}_{0} \bullet \mathrm{O}_{1} \bullet \mathrm{O}_{2} \bullet \mathrm{O}_{3}+\mathrm{BIN} / \overline{\mathrm{DEC}} \cdot \overline{\mathrm{UP} / \overline{\mathrm{DN}} \cdot \overline{\mathrm{O}}_{0} \bullet \overline{\mathrm{O}}_{1} \bullet \overline{\mathrm{O}}_{2} \bullet \overline{\mathrm{O}}_{3}}+\right.}$
$\left.\mathrm{BIN} / \overline{\mathrm{DEC}} \bullet \mathrm{UP} / \overline{\mathrm{DN}} \bullet \mathrm{O}_{0} \bullet \mathrm{O}_{3}+\mathrm{BIN} / \overline{\mathrm{DEC}} \cdot \mathrm{UP} / \overline{\mathrm{DN}} \bullet \overline{\mathrm{O}}_{0} \bullet \overline{\mathrm{O}}_{1} \bullet \overline{\mathrm{O}}_{2} \bullet \overline{\mathrm{O}}_{3}\right)$

Synchronous up/down counter, binary/decade counter

 HEF4029B
AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	TYPICAL FORMULA FOR P ($\mu \mathrm{W}$)	
Dynamic power dissipation per package (P)	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{array}{r} 1000 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \\ 4500 f_{i}+\sum\left(f_{0} C_{L}\right) \times V_{D D^{2}} \\ 11500 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \end{array}$	where $\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz) $\mathrm{f}_{\mathrm{O}}=$ output freq. (MHz) $\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF) $\Sigma\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs $\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{CP} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \\ \hline \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 145 \\ 55 \\ 40 \end{array}$	$\begin{array}{r} 290 \\ 110 \\ 75 \\ \hline \end{array}$	ns ns ns	$\begin{array}{r} 118 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 44 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ \hline \end{array}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tple	$\begin{array}{r} \hline 160 \\ 60 \\ 40 \end{array}$	$\begin{array}{r} 315 \\ 120 \\ 80 \end{array}$	ns ns ns	$\begin{array}{r} 133 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 49 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ \hline \end{array}$
$\overline{\mathrm{CP}} \rightarrow \overline{\mathrm{TC}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 280 \\ 105 \\ 70 \end{array}$	$\begin{aligned} & 560 \\ & 205 \\ & 140 \end{aligned}$	ns ns ns	$\begin{array}{r} 253 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 94 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 62 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLH }}$	$\begin{array}{r} 195 \\ 75 \\ 55 \end{array}$	$\begin{aligned} & \hline 385 \\ & 150 \\ & 105 \end{aligned}$	ns ns ns	$\begin{array}{r} 168 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 64 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 47 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
$\mathrm{PL} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} \hline 120 \\ 50 \\ 35 \end{array}$	$\begin{array}{r} 240 \\ 100 \\ 70 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} & 93 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PL }}$	$\begin{array}{r} \hline 170 \\ 65 \\ 45 \end{array}$	$\begin{array}{r} 335 \\ 130 \\ 90 \end{array}$	ns ns ns	$\begin{array}{r} 143 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 54 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 37 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
$\overline{\mathrm{CE}} \rightarrow \overline{\mathrm{TC}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} \hline 180 \\ 70 \\ 50 \end{array}$	$\begin{aligned} & \hline 360 \\ & 140 \\ & 100 \end{aligned}$	ns ns ns	$\begin{array}{r} 153 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 59 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 42 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ \hline \end{array}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLL }}$	$\begin{array}{r} \hline 170 \\ 65 \\ 50 \end{array}$	$\begin{aligned} & \hline 335 \\ & 135 \\ & 100 \\ & \hline \end{aligned}$	ns ns ns	$\begin{array}{r} 143 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 54 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 42 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ \hline \end{array}$

Synchronous up/down counter, binary/decade counter MSI

HEF4029B

	$\mathbf{V}_{\mathbf{D D}}$		SYMBOL	MIN.	TYP.	MAX.	
V			TYPICAL EXTRAPOLATION				
FORMULA							

Synchronous up/down counter, binary/decade counter

 HEF4029B
AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN	TYP	MAX	
Minimum clock pulse width; LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {WCPL }}$	$\begin{array}{r} \hline 110 \\ 35 \\ 25 \end{array}$	$\begin{aligned} & \hline 55 \\ & 20 \\ & 15 \end{aligned}$	ns ns ns	see also waveforms Figs 7 and 8
Minimum PL pulse width; HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {WPLH }}$	$\begin{array}{r} \hline 160 \\ 55 \\ 35 \end{array}$	$\begin{aligned} & \hline 80 \\ & 25 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \hline \end{aligned}$	
Recovery time for PL	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\mathrm{RPL}}$	$\begin{array}{r} \hline 150 \\ 50 \\ 35 \end{array}$	$\begin{aligned} & 75 \\ & 25 \\ & 20 \end{aligned}$	ns ns ns	
Set-up times $\mathrm{BIN} / \overline{\mathrm{DEC}} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {su }}$	$\begin{array}{r} \hline 270 \\ 90 \\ 60 \end{array}$	$\begin{array}{r} \hline 135 \\ 45 \\ 30 \end{array}$	ns ns ns	
$\mathrm{UP} / \overline{\mathrm{DN}} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {su }}$	$\begin{array}{r} \hline 300 \\ 105 \\ 75 \end{array}$	$\begin{array}{r} \hline 150 \\ 55 \\ 35 \end{array}$	ns ns ns	
$\overline{\mathrm{CE}} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {su }}$	$\begin{array}{r} 240 \\ 90 \\ 70 \end{array}$	$\begin{array}{r} 120 \\ 50 \\ 40 \\ \hline \end{array}$	ns ns ns	
$P_{\mathrm{n}} \rightarrow \mathrm{PL}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 70 \\ & 20 \\ & 10 \end{aligned}$	$\begin{array}{r} \hline 35 \\ 10 \\ 5 \end{array}$	ns ns ns	
Hold times $\mathrm{BIN} / \overline{\mathrm{DEC}} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	thold	$\begin{aligned} & 45 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline-90 \\ & -30 \\ & -20 \end{aligned}$	ns ns ns	
$\mathrm{UP} / \overline{\mathrm{DN}} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	thold	$\begin{array}{r} 15 \\ 0 \\ -5 \end{array}$	$\begin{array}{r} -135 \\ -50 \\ -35 \end{array}$	ns ns ns	
$\overline{\mathrm{CE}} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	thold	$\begin{array}{r} 30 \\ 10 \\ 5 \end{array}$	$\begin{aligned} & \hline-30 \\ & -10 \\ & -10 \end{aligned}$	ns ns ns	
$\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{PL}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	thold	$\begin{array}{r} 15 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} -20 \\ -10 \\ -5 \end{array}$	ns ns ns	
Maximum clock pulse frequency	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{f}_{\text {max }}$	$\begin{aligned} & \hline 2 \\ & 5 \\ & 8 \end{aligned}$	$\begin{array}{r} 4 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & \hline \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	

Synchronous up/down counter, binary/decade counter

 HEF4029B

Fig. 7 Waveforms showing minimum pulse width for CP , set-up and hold times for $\overline{\mathrm{CE}}$ to $\mathrm{CP}, \mathrm{BIN} / \overline{\mathrm{DEC}}$ to CP and UP/DN to CP. Set-up and hold times are shown as positive values but may be specified as negative values.

Fig. 8 Waveforms showing minimum pulse width for PL, recovery time for PL, and set-up and hold times for P_{n} to PL. Set-up and hold times are shown as positive values but may be specified as negative values.

Fig. 9 Timing diagram; decade mode; $P_{0}=L O W ; P_{3}=L O W ; B I N / \overline{D E C}=L O W$.

Fig． 10 Timing diagram；binary mode；$P_{0}=H I G H ; P_{1}=L O W ; B I N / \overline{D E C}=H I G H$.

Synchronous up/down counter, binary/decade counter

APPLICATION INFORMATION

Some examples of applications for the HEF4029B are:

- Programmable binary and decade counting/frequency synthesizers - BCD output.
- Analogue-to-digital and digital-to-analogue conversion.
- Up/down binary counting.
- Magnitude and sign generation.
- Up/down decade counting.
- Difference counting.

