DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4021B
 MSI

8-bit static shift register
Product specification
File under Integrated Circuits, IC04

PHILIPS

8-bit static shift register

DESCRIPTION

The HEF4021B is an 8-bit static shift register (parallel-to-serial converter) with a synchronous serial data input (D_{S}), a clock input (CP), an asynchronous active HIGH parallel load input (PL), eight asynchronous parallel data inputs (P_{0} to P_{7}) and buffered parallel outputs from the last three stages $\left(0_{5}\right.$ to $\left.\mathrm{O}_{7}\right)$.

Each register stage is a D-type master-slave flip-flop with a set direct/clear direct input. Information on P_{0} to P_{7} is asynchronously loaded into the register while PL is HIGH, independent of CP and DS. When PL is LOW, data on D_{S} is shifted into the first register position and all the data in the register is shifted one position to the right on the LOW to HIGH transition of CP. Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

Fig. 1 Functional diagram.

Fig. 2 Pinning diagram.

HEF4021BP(N):	16-lead DIL; plastic
	(SOT38-1)
HEF4021BD(F):	16-lead DIL; ceramic (cerdip)
	(SOT74)
HEF4021BT(D): $\quad 16$-lead SO; plastic	
(SOT109-1)	
(): Package Designator North America	

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications

PINNING

PL	parallel load input
P_{0} to P_{7}	parallel data inputs
D_{5}	serial data input
CP	clock input (LOW to HIGH edge-triggered)
O_{5} to O_{7}	buffered parallel outputs from the last three stages

3
G661 Kıenuer

Fig. 3 Logic diagram

FUNCTION TABLES

Serial operation

	INPUTS			OUTPUTS		
\mathbf{n}	$\mathbf{C P}$	$\mathrm{D}_{\mathbf{S}}$	$\mathbf{P L}$	$\mathbf{O}_{\mathbf{5}}$	\mathbf{O}_{6}	$\mathbf{O}_{\mathbf{7}}$
1	\digamma	D_{1}	L	X	X	X
2	Γ	D_{2}	L	X	X	X
3	Γ	D_{3}	L	X	X	X
6	Γ	X	L	D_{1}	X	X
7	Γ	X	L	D_{2}	D_{1}	X
8	Γ	X	L	D_{3}	D_{2}	D_{1}
	\boldsymbol{L}	X	L	no change		

Parallel operation

	INPUTS			OUTPUTS		
\mathbf{n}	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{S}}$	$\mathbf{P L}$	$\mathbf{O}_{\mathbf{5}}$	$\mathbf{O}_{\mathbf{6}}$	$\mathbf{O}_{\mathbf{7}}$
	X	X	H	P_{5}	P_{6}	P_{7}

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)

L = LOW state (the less positive voltage)
$\mathrm{X}=$ state is immaterial
$\digamma=$ positive-going transition
L = negative-going transition
$D_{n}=$ either HIGH or LOW
$\mathrm{n}=$ number of clock pulse transitions

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD} V	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{CP} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 125 \\ 55 \\ 40 \end{array}$	$\begin{array}{r} 250 \\ 110 \\ 80 \end{array}$	ns ns ns	$\begin{aligned} & 98 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 44 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{array}{r} 115 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 230 \\ 100 \\ 80 \end{array}$	ns ns ns	$\begin{aligned} & 88 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ & 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$
$\mathrm{PL} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 120 \\ 55 \\ 40 \end{array}$	$\begin{array}{r} 240 \\ 110 \\ 80 \end{array}$	ns ns ns	$\begin{aligned} & 93 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 44 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{array}{r} 105 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 210 \\ 100 \\ 80 \end{array}$	ns ns ns	$\begin{aligned} & 78 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {TLH }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN.	TYP.	MAX.	
Set-up time $\mathrm{D}_{\mathrm{S}} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	t_{su}	$\begin{aligned} & 25 \\ & 25 \\ & 15 \end{aligned}$	$\begin{array}{r} -15 \\ -10 \\ -5 \end{array}$	ns ns ns	see also waveforms Figs 4 and 5
$P_{n} \rightarrow P L$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 50 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 25 \\ 10 \\ 5 \end{array}$	ns ns ns	
Hold times $\mathrm{D}_{\mathrm{S}} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {hold }}$	$\begin{aligned} & 40 \\ & 20 \\ & 15 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 8 \end{array}$	ns ns ns	
$\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{PL}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {hold }}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{array}{r} -10 \\ 0 \\ 0 \end{array}$	ns ns ns	
Minimum clock pulse width; LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {WCPL }}$	$\begin{aligned} & 70 \\ & 30 \\ & 24 \end{aligned}$	$\begin{aligned} & 35 \\ & 15 \\ & 12 \end{aligned}$	ns ns ns	
Minimum PL pulse width; HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {WPLH }}$	$\begin{aligned} & 70 \\ & 30 \\ & 24 \end{aligned}$	$\begin{aligned} & 35 \\ & 15 \\ & 12 \end{aligned}$	ns ns ns	
Recovery time for PL	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\mathrm{RPL}}$	$\begin{aligned} & 50 \\ & 40 \\ & 35 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 5 \end{array}$	ns ns ns	
Maximum clock pulse frequency	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{f}_{\text {max }}$	$\begin{array}{r} 6 \\ 15 \\ 20 \end{array}$	$\begin{aligned} & 13 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	

	$\mathbf{V} \mathbf{V}_{\mathbf{D D}}$	TYPICAL FORMULA FOR P $(\mu \mathrm{W})$	
Dynamic power	5	$900 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}^{2}}$	where
dissipation per	10	$4300 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$12000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
			$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)
			$\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

Fig. 4 Waveforms showing minimum clock pulse width, set-up time and hold time for CP and D_{S}.

