DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF40195B MSI
 4-bit universal shift register

Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF40195B is a fully synchronous edge-triggered 4-bit shift register with a clock input (CP), four synchronous parallel data inputs (P_{0} to P_{3}), two synchronous serial data inputs (J, $\overline{\mathrm{K}})$, a synchronous parallel enable input $(\overline{\mathrm{PE}})$, buffered parallel outputs from all 4-bit positions $\left(\mathrm{O}_{0}\right.$ to $\left.\mathrm{O}_{3}\right)$, a buffered inverted output from the last bit position $\left(\overline{\mathrm{O}}_{3}\right)$ and an overriding asynchronous master reset input ($\overline{\mathrm{MR}}$). Each register stage is of a D-type master-slave flip-flop. Operation is synchronous (except for MR) and is edge-triggered on the LOW to HIGH transition of the CP
input. When $\overline{\mathrm{PE}}$ is LOW, data are loaded into the register from P_{0} to P_{3} on the LOW to HIGH transition of CP. When $\overline{\mathrm{PE}}$ is HIGH, data are shifted into the first register position from J and \bar{K} and all the data in the register are shifted one position to the right on the LOW to HIGH transition of CP. D-type entry is obtained by interconnecting J and $\overline{\mathrm{K}}$. When J is HIGH and $\overline{\mathrm{K}}$ is LOW, the first stage is in the toggle mode. When J is LOW and $\overline{\mathrm{K}}$ is HIGH, the first stage is in the hold mode.
A LOW on $\overline{M R}$ resets all four bit positions (O_{0} to $\mathrm{O}_{3}=\mathrm{LOW}, \overline{\mathrm{O}}_{3}=\mathrm{HIGH}$) independent of all other input conditions.

Fig. 1 Functional diagram.

Fig. 2 Pinning diagram.

HEF40195BP(N): 16-lead DIL; plastic (SOT38-1)
HEF40195BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)
HEF40195BT(D): 16-lead SO; plastic
(SOT109-1)
(): Package Designator North America

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications
3
G661. Kienuer

[^0]
4-bit universal shift register

PINNING

$\overline{\mathrm{PE}}$	parallel enable input (active LOW)
P_{0} to P_{3}	parallel data inputs
J	first stage J-input (active HIGH)
$\overline{\mathrm{K}}$	first stage K-input (active LOW)
CP	clock input (LOW to HIGH edge triggered) $\overline{\mathrm{MR}}$
O_{0} to O_{3}	master reset input (active LOW) $\overline{\mathrm{O}}_{3}$
buffered parallel outputs	
buffered inverted output from last stage	

FUNCTION TABLE

OPERATING MODE	INPUTS ($\overline{\mathrm{MR}}=\mathbf{H I G H}$)							OUTPUTS AT $\mathrm{t}_{\mathrm{n}+1}$				
	$\overline{\text { PE }}$	J	$\overline{\mathbf{K}}$	P_{0}	P_{1}	P_{2}	P_{3}	O_{0}	O_{1}	O_{2}	O_{3}	$\overline{\mathrm{O}}_{3}$
shift mode	H	L	L	X	X	X	X	L	O_{0}	O_{1}	O_{2}	$\overline{\mathrm{O}}_{2}$
	H	L	H	X	X	X	X	O_{0}	O_{0}	O_{1}	O_{2}	$\overline{\mathrm{O}}_{2}$
	H	H	L	X	X	X	X	$\overline{\mathrm{O}}_{0}$	O_{0}	O_{1}	O_{2}	$\overline{\mathrm{O}}_{2}$
	H	H	H	X	X	X	X	H	O_{0}	O_{1}	O_{2}	$\overline{\mathrm{O}}_{2}$
parallel entry mode	L	X	X	L	L	L	L	L	L	L	L	H
	L	X	X	H	H	H	H	H	H	H	H	L

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
2. $\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage)
3. $\mathrm{X}=$ state is immaterial
4. $\mathrm{t}_{\mathrm{n}+1}=$ state after next LOW to HIGH transition of CP

4-bit universal shift register

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{CP} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 105 \\ 50 \\ 35 \end{array}$	$\begin{array}{r} 215 \\ 95 \\ 65 \end{array}$	ns ns ns	$\begin{aligned} & 78 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & 90 \\ & 45 \\ & 30 \end{aligned}$	$\begin{array}{r} \hline 180 \\ 85 \\ 60 \end{array}$	ns ns ns	$\begin{aligned} & \hline 63 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 34 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
$\mathrm{CP} \rightarrow \overline{\mathrm{O}}_{3}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 125 \\ 50 \\ 35 \end{array}$	$\begin{array}{r} 255 \\ 100 \\ 70 \end{array}$	ns ns ns	$\begin{aligned} & 98 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{array}{r} 120 \\ 50 \\ 35 \\ \hline \end{array}$	$\begin{array}{r} 240 \\ 105 \\ 75 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} & 93 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
$\overline{\overline{\mathrm{MR}}} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} \hline 100 \\ 45 \\ 30 \\ \hline \end{array}$	$\begin{array}{r} 205 \\ 90 \\ 65 \end{array}$	ns ns ns	$\begin{aligned} & \hline 73 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 34 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{array}{r} 125 \\ 55 \\ 40 \end{array}$	$\begin{array}{r} 235 \\ 115 \\ 85 \end{array}$	ns ns ns	$\begin{aligned} & 98 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 44 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {TLH }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$

4-bit universal shift register

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	v_{DD}	TYPICAL FORMULA FOR P ($\mu \mathrm{W}$)	
Dynamic power dissipation per package (P)	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{array}{r} 1900 f_{i}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{D D^{2}} \\ 8300 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2} \\ 22800 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{D D^{2}} \end{array}$	where $\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz) $\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz) $\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF) $\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs $\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)

Fig. 5 Waveforms showing set-up and hold times for $\overline{\text { PE }}$ input. Set-up and hold times are shown as positive values but may be specified as negative values.

APPLICATION INFORMATION

Some examples of applications for the HEF40195B are:

- Serial data transfer
- Parallel data transfer
- Serial to parallel data transfer
- Parallel to serial data transfer

[^0]: 4-bit universal shift register

