DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF40194B MSI

4-bit bidirectional universal shift register

File under Integrated Circuits, IC04

PHILIPS

4-bit bidirectional universal shift register

DESCRIPTION

The HEF40194B is a 4-bit bidirectional shift register with two mode control inputs (S_{0} and S_{1}), a clock input (CP), a serial data shift left input ($\mathrm{D}_{\text {SL }}$), a serial data shift right input (D_{SR}), four parallel data inputs (P_{0} to P_{3}), an overriding asynchronous master reset input ($\overline{\mathrm{MR}}$), and four buffered parallel outputs $\left(\mathrm{O}_{0}\right.$ to $\left.\mathrm{O}_{3}\right)$. When LOW, $\overline{M R}$ resets all stages and forces O_{0} to $\mathrm{O}_{3} \mathrm{LOW}$, overriding all other input conditions. When $\overline{\mathrm{MR}}$ is HIGH, the operation mode is controlled by S_{0} and S_{1} as shown in the function table.

Fig. 1 Functional diagram.

PINNING
$\mathrm{S}_{0}, \mathrm{~S}_{1} \quad$ mode control inputs
P_{0} to P_{3}
D_{SR} parallel data inputs
$D_{\text {SR }} \quad$ serial data shift right input
$\mathrm{D}_{\mathrm{SL}} \quad$ serial data shift left input
CP clock input (LOW to HIGH edge-triggered)
$\overline{\mathrm{MR}} \quad$ master reset input (active LOW)
O_{0} to O_{3}

Serial and parallel operation are edge-triggered on the LOW to HIGH transition of CP. The inputs at which the data are to be entered and S_{0}, S_{1} must be stable for a set-up time before the LOW to HIGH transition of CP.

Fig. 2 Pinning diagram.

HEF40194BP(N): 16-lead DIL; plastic
(SOT38-1)
HEF40194BD(F): 16-lead DIL; ceramic (cerdip)
(SOT74)
HEF40194BT(D): 16-lead SO; plastic
(SOT109-1)
(): Package Designator North America

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications
G661 Kıenuer
Fig． 3 Logic diagram．
タカ6レ0カコヨH
4－bit bidirectional universal shift register

SW

FUNCTION TABLE

OPERATING MODE	INPUTS ($\overline{\mathrm{MR}}=\mathrm{HIGH}$)					OUTPUTS AT $\mathrm{T}_{\mathrm{n}+1}$			
	S_{1}	S_{0}	$\mathrm{D}_{\text {SR }}$	$\mathrm{D}_{\text {SL }}$	P_{0} TO P_{3}	O_{0}	O_{1}	O_{2}	O_{3}
hold	L	L	X	X	X	O_{0}	O_{1}	O_{2}	O_{3}
shift left	H	L	X	L	X	O_{1}	O_{2}	O_{3}	L
	H	L	X	H	X	O_{1}	O_{2}	O_{3}	H
shift right	L	H	L	X	X	L	O_{0}	O_{1}	O_{2}
	L	H	H	X	X	H	O_{0}	O_{1}	O_{2}
parallel load	H	H	X	X	L	L	L	L	L
	H	H	X	X	H	H	H	H	H

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
2. $\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage)
3. $X=$ state is immaterial
4. $\mathrm{t}_{\mathrm{n}+1}=$ state after next LOW to HIGH transition of CP

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathrm{v}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	TYPICAL FORMULA FOR P ($\mu \mathrm{W}$)	
Dynamic power dissipation per package (P)	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} \hline 1500 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D}{ }^{2} \\ 6900 f_{i}+\sum\left(\mathrm{f}_{0} C_{L}\right) \times V_{D D^{2}} \\ 18900 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \end{aligned}$	where $\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz) $\mathrm{f}_{\mathrm{O}}=$ output freq. (MHz) C_{L} = load cap. (pF) $\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs $\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN. TYP.	MAX.		TYPICALEXTRAPOLATION FORMULA
Propagation delays $\mathrm{CP} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 100 \\ 40 \\ 30 \end{array}$	$\begin{array}{r} 205 \\ 85 \\ 60 \end{array}$	ns ns ns	$\begin{aligned} & 73 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 29 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & 80 \\ & 35 \\ & 25 \end{aligned}$	$\begin{array}{r} \hline 165 \\ 70 \\ 55 \end{array}$	ns ns ns	$\begin{aligned} & 53 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 24 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 17 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\overline{\mathrm{MR}} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 85 \\ & 40 \\ & 30 \end{aligned}$	$\begin{array}{r} 175 \\ 80 \\ 60 \end{array}$	ns ns ns	$\begin{aligned} & 58 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 29 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\mathrm{THL}}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {TLH }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} \hline 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$

[^0]Fig． 4 Waveforms showing set－up times，hold times for $D_{S R}, D_{S L}$ and P_{n} inputs；minimum $\overline{M R}$ pulse width，$\overline{M R}$ to output delays and $\overline{M R}$ to $C P$ recovery time；minimum CP pulse width and CP to output delays．Set－up and hold times are shown as positive values but may be specified as negative values．

Fig. 5 Waveforms showing set-up times and hold times for S_{0} and S_{1} inputs. Set-up and hold times are shown as positive values but may be specified as negative values.

APPLICATION INFORMATION

Some examples of applications for the HEF40194B are:

- Arithmetic unit register
- Serial/parallel converter.

[^0]: 日ャ6เ0ヤコヨH

