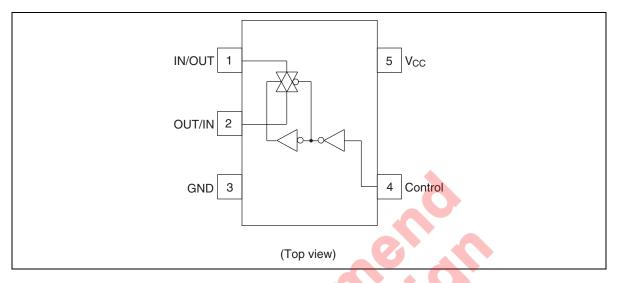


Analog Switch

REJ03D0204-0400Z (Previous ADE-205-022B (Z)) Rev.4.00 Feb.02.2004

Description

The HD74UH4066 is high-speed CMOS analog switch using silicon gate CMOS process. With CMOS low power dissipation, it provides high speed. The device has low ON resistance for good transfer characteristics and can take wide range of input voltage.


Features

- Encapsulated in very small 5pins package of $2.9 \times 1.6 \times 1.1$ mm, the efficiency to mount on substrate is significantly improved.
- The basic gate function is lined up as Renesas uni logic series.
- Supplied on emboss taping for high-speed automatic mounting.
- Electrical characteristics equivalent to the HD74HC4066 Supply voltage range: 2 to 6 V Operating temperature range: -40 to +85°C
- $|I_{OH}| = I_{OL} = 2 \text{ mA (min)}$
- Ordering Information

Part Name	Package Type	Package Code	Package Abbreviation	Taping Abbreviation (Quantity)
HD74UH4066EL	MPAK-5 pin	MPAK-5V	_	EL (3,000 pcs/reel)

Pin Arrangement

Article Indication

Marking Lot number
H 9 A

Absolute Maximum Ratings

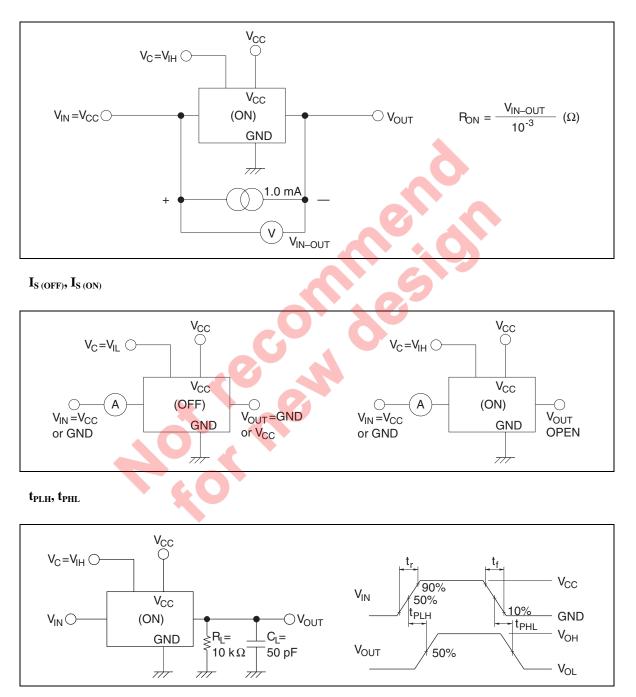
Item	Symbol	Ratings	Unit
Supply voltage	V _{CC}	-0.5 to +7.0	V
Input voltage	V _{IN}	–0.5 to V _{CC} +0.5	V
Output voltage	V _{OUT}	–0.5 to V _{CC} +0.5	V
Input diode current	I _{IK}	±20	mA
Output diode current	Ι _{ΟΚ}	±20	mA
Output current	I _{OUT}	±25	mA
V _{CC} /GND current	I _{CC} , I _{GND}	±25	mA
Power dissipation	PT	200	mW
Storage temperature	Tstg	-65 to +150	°C

Recommended Operating Conditions

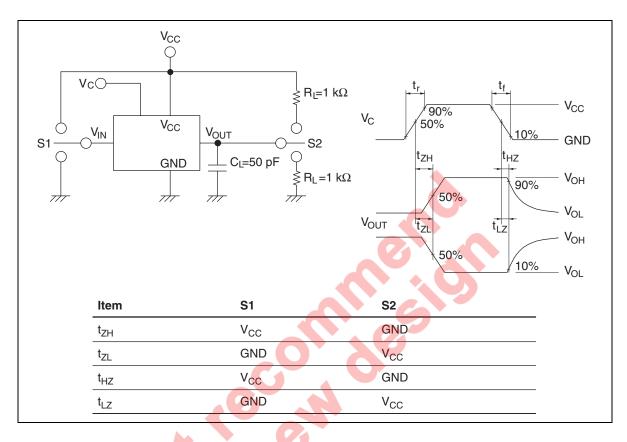
Item	Symbol	Ratings	Unit
Supply voltage	V _{CC}	2 to 6	V
Input voltage	V _{IN}	0 to V _{CC}	V
Output voltage	V _{OUT}	0 to V _{CC}	V
Operating temperature	Topr	-40 to +85	°C
Input rise/fall time	t _r , t _f	0 to 1000 (V _{CC} = 2.0 V)	ns
		0 to 500 ($V_{CC} = 4.5 V$)	
		0 to 400 ($V_{CC} = 6.0 \text{ V}$)	

Electrical Characteristics

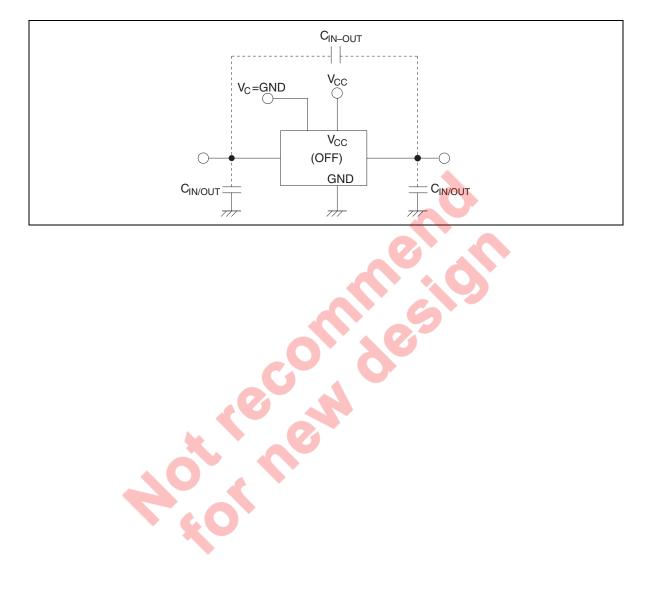
Electrical C	haracter	ristics	5					Ò	
		Vcc	Ta = 2	25°C		Ta = -40) to 85°C		\mathbf{O}
ltem	Symbol	(V)	Min	Тур	Max	Min	Max	Unit	Test Conditions
Input voltage	VIH	2.0	1.5	_	_	1.5		V	
		4.5	3.15	—	-	3.15	- 6		
		6.0	4.2	—		4.2	-25		
	VIL	2.0	—	-	0.5	- 7	0.5	V	
		4.5	_	-6	1.35	-	1.35	_	
		6.0	-	7	1.8	+	1.8	_	
On resistance	R _{ON}	2.0	4	2000	5000	-	6250	Ω	$V_{C} = V_{IH}$
		4.5	_	100	200	_	250		$V_{IN} = 0$ to V_{CC}
		6.0	-	60	170	_	210		I _{IN/OUT} = 1 mA
Leak current	I _S (off)	6.0	3	_	±0.1	_	±1.0	μA	$\label{eq:VC} \begin{split} V_{C} &= V_{IL} \\ V_{IN} &= V_{CC}, \ V_{OUT} = GND \\ or \ V_{IN} &= GND, \ V_{OUT} = V_{CC} \end{split}$
	l _S (on)	6.0		—	±0.1	—	±1.0	μA	$V_{C} = V_{IH}$ $V_{IN} = V_{CC}$ or GND
Input current	I _{IN}	6.0	—	—	±0.1	_	±1.0	μA	$V_{IN} = V_{CC} \text{ or } GND$
Operating current	I _{CC}	6.0			1.0		10.0	μA	$V_{IN} = V_{CC}$ or GND


Switching Characteristics

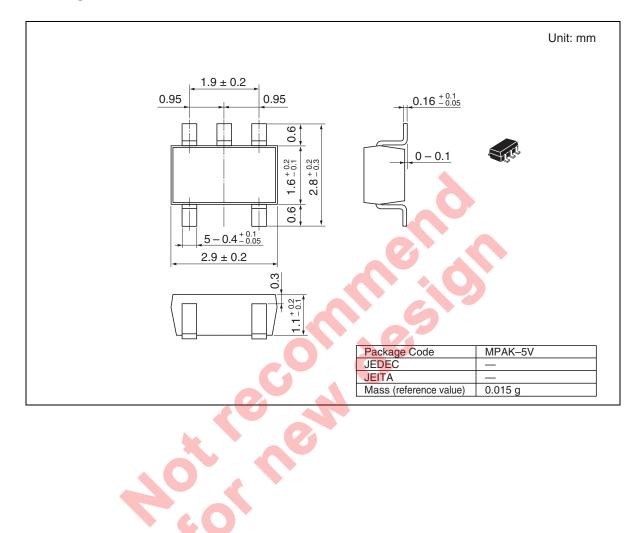
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Symbol		Ta = 25°C			Ta = -40 to 85°C			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ltem		Vcc	Min	Тур	Max	Min	Max	Unit	Test Conditions
$\frac{4.3}{6.0} = 4 + 10 = 13$ $\frac{4.3}{6.0} = -11$ Output enable t _{PZL} t _{PZH} $\frac{2.0 115 - 145}{6.0 20} \text{ ns} R_L = 1 \text{ K}\Omega$ $\frac{4.5 - 10 + 23 - 29}{6.0 25}$ Output disable t _{LZ} t _{HZ} $\frac{2.0 115 - 145}{6.0 20} \text{ ns} R_L = 1 \text{ K}\Omega$ $\frac{4.5 - 14 + 23 - 29}{6.0 25}$ Maximum t _{max} $\frac{2.0 - 20 - 25}{6.0 20}$ MHz $\frac{2.0 - 20 - 25}{6.0 20}$ MHz Control input t _{max} $\frac{2.0 - 20 25}{6.0 5}$ MHz Control input C _{IN} $\frac{- 5 + 10 - 10 - 10 - 5}{10 - 10 - 5}$ $- 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5$			2.0	_	_	50	_	65	ns	$R_L = 10 \text{ K}\Omega$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	delay time	t _{PHL}	4.5	_	4	10	_	13	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			6.0	—	—	9	_	11	_	
$\frac{4.3}{6.0} 20 - 25$ Output disable t _{LZ} t _{HZ} $\frac{2.0 115 - 145}{4.5 - 14 23 - 29}$ $\frac{4.5 - 14 23 - 29}{6.0 20 - 25}$ Maximum t _{max} $\frac{2.0 - 20 - 25}{6.0 20 - 25}$ MHz MHz Control frequency $\frac{2.0 - 30 6}{6.0 - 30 7}$ Control input C _{IN} 5 10 - 10 pF Switch I/O C _{IN/OUT} 6 pF Feed through C _{IN-OUT} 0.5 pF		t _{PZL}	2.0	_	_	115	_	145	ns	$R_L = 1 \ K\Omega$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	time	t _{PZH}	4.5	—	10	23		29	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			6.0	_	_	20	_	25	-	
$\frac{4.5}{6.0} - \frac{14}{23} - \frac{29}{6.0} = \frac{29}{6.0} = \frac{29}{6.0} = \frac{20}{6.0} = \frac{10}{6.0} = 1$			2.0			115		145	ns	$R_L = 1 K\Omega$
$\begin{array}{c} \mbox{Maximum}\\ \mbox{control}\\ \mbox{frequency} \end{array} \label{eq:max} t_{max} & \begin{tabular}{c} 2.0 & - & 20 & - & - & \\ \hline 4.5 & - & 30 & - & - & \\ \hline 4.5 & - & 30 & - & - & \\ \hline 6.0 & - & 30 & - & - & \\ \hline 6.0 & - & 30 & - & - & \\ \hline 6.0 & - & 5 & 10 & - & 10 & pF \\ \end{tabular}$	time	t _{HZ}	4.5		14	23		29		
$ \begin{array}{c} \mbox{control} \\ \mbox{frequency} \end{array} & \begin{array}{c} \mbox{4.5} & - & 30 & - & - \\ \hline \mbox{6.0} & - & 30 & - & - \\ \hline \mbox{6.0} & - & 30 & - & - \\ \hline \mbox{Control input} \\ \mbox{capacitance} \end{array} & \begin{array}{c} \mbox{C}_{\text{IN}} & - & - & 5 \\ \hline \mbox{Switch I/O} \\ \mbox{capacitance} \end{array} & \begin{array}{c} \mbox{C}_{\text{IN}/\text{OUT}} & - & - & 5 \\ \hline \mbox{Feed through} & \mbox{C}_{\text{IN}-\text{OUT}} & - & - & 0.5 \\ \hline \mbox{Feed through} & \mbox{C}_{\text{IN}-\text{OUT}} & - & - & 0.5 \\ \hline \mbox{Feed through} & \mbox{C}_{\text{IN}-\text{OUT}} & - & - & 0.5 \\ \hline \mbox{Feed through} & \mbox{C}_{\text{IN}-\text{OUT}} & - & - & 0.5 \\ \hline \mbox{Feed through} & \mbox{C}_{\text{IN}-\text{OUT}} & - & - & 0.5 \\ \hline \mbox{Feed through} & \mbox{C}_{\text{IN}-\text{OUT}} & - & - & 0.5 \\ \hline \mbox{Feed through} & \mbox{C}_{\text{IN}-\text{OUT}} & - & - & 0.5 \\ \hline \mbox{Feed through} & \mbox{C}_{\text{IN}-\text{OUT}} & - & - & 0.5 \\ \hline \mbox{Feed through} & \mbox{C}_{\text{IN}-\text{OUT}} & - & - & 0.5 \\ \hline \mbox{Feed through} & \mbox{C}_{\text{IN}-\text{OUT}} & - & - & 0.5 \\ \hline \mbox{Feed through} & \mbox{C}_{\text{IN}-\text{OUT}} & - & - & 0.5 \\ \hline \mbox{Feed through} & \mbox{C}_{\text{IN}-\text{OUT}} & - & - & 0.5 \\ \hline \mbox{Feed through} & \mbox{C}_{\text{IN}-\text{OUT}} & - & - & 0.5 \\ \hline \mbox{Feed through} & \mbox{C}_{\text{IN}-\text{OUT}} & - & - & 0.5 \\ \hline \mbox{Feed through} & \mbox{C}_{\text{IN}-\text{OUT}} & - & - & 0.5 \\ \hline \mbox{Feed through} & \mbox{C}_{\text{IN}-\text{OUT}} & - & - & 0.5 \\ \hline \mbox{Feed through} & \mbox{C}_{\text{IN}-\text{OUT}} & - & - & 0.5 \\ \hline \mbox{Feed through} & \$			6.0	—	—	20	_	25		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		t _{max}	2.0	—	20	—	_		MHz	$\mathbf{\Lambda}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4.5	—	30	—	—			
capacitance Switch I/O C _{IN/OUT} — — 6 pF capacitance Feed through C _{IN-OUT} — — 0.5 — — pF	inequency		6.0	_	30	_				
capacitance Feed through C _{IN-OUT} 0.5 pF		C _{IN}	—	—	5	10		10	pF	
		C _{IN/OUT}	—		6	0	-	S	pF	
capacitance	Feed through capacitance	$C_{\text{IN-OUT}}$		-	0.5	-	-	-	pF	
Power C _{PD} – 13 – – pF dissipation capacitance	dissipation	C _{PD}	-	<	13	Ō	5	_	pF	


Test Circuit

RON


$t_{\rm ZH},\,t_{\rm ZL}\,/\,t_{\rm HZ},\,t_{\rm LZ}$

Maximum control frequency Vcc \bigcirc V_CO V_{CC} $V_{\rm C}$ GND V_{CC} V_{OUT} $V_{IN} = V_{CC}$ $\begin{cases} R_{L} = \\ 1 k \Omega \end{cases}$ _C_L=15 pF GND V_{OUT} $V_{CC}/2$ $\overrightarrow{}$ ŤΓ 777



C_{IN/OUT}, C_{IN-OUT}

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. vithout notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any analyse for manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. assumes no responsibility for an authorized Renesas Technology Corp. products. Renesas Technology Corp. assumes no responsibility for any damage or

- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and
- a noise product of the imported into a country other than the approved destination.
 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited. Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

http://www.renesas.com