RENESAS HD74LVCZ16240A

16-bit Buffers / Line Drivers with 3-state Outputs

REJ03D0373–0200 (Previous ADE-205-231 (Z)) Rev.2.00 Aug. 19, 2004

Description

The HD74LVCZ16240A has sixteen inverter drivers with three state outputs in a 48 pin package. This device is a inverting buffer and has four active low enables ($1\overline{G}$ to $4\overline{G}$). Each enable independently controls four buffers.

When V_{CC} is between 0 and 1.5 V, the device is in the high impedance state during power up or power down.

Low voltage and high-speed operation is suitable at battery drive product (note type personal computer) and low power consumption extends the life of a battery for long time operation.

Features

- $V_{CC} = 2.7$ to 5.5 V
- All inputs V_{IH} (Max) = 5.5 V (@V_{CC} = 0 to 5.5 V)
- All outputs V_0 (Max) = 5.5 V (@V_{CC} = 0 V or output off state)
- Typical V_{OL} ground bounce < 0.8 V (@V_{CC} = 3.3 V, Ta = 25°C)
- Typical V_{OH} undershoot > 2.0 V (@V_{CC} = 3.3 V, Ta = 25°C)
- High impedance state during power up and power down
- Power off disables outputs, permitting live insertion
- High output current ± 24 mA (@V_{CC} = 3.0 to 5.5 V)
- Ordering Information

Part Name	Package Type	Package Code	Package Abbreviation	Taping Abbreviation (Quantity)
HD74LVCZ16240ATEL	TSSOP-48 pin	TTP-48DBV	Т	EL (1,000 pcs/reel)

Function Table

Inputs Output Y G A Output Y H X Z L H L L L H

H: High level

L: Low level

X: Immaterial

Z: High impedance

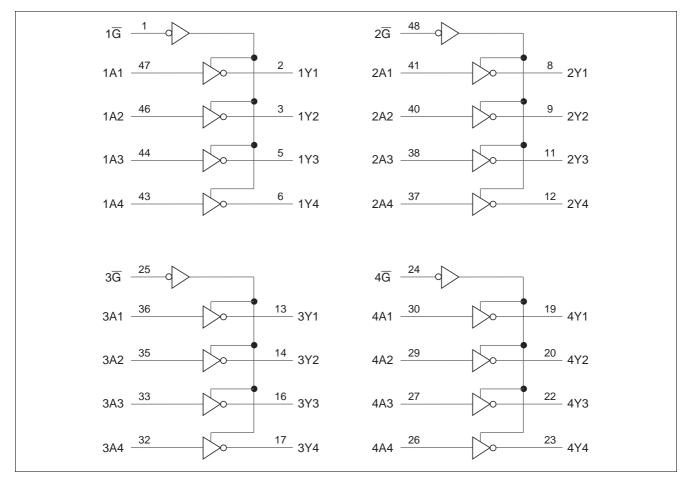
Pin Arrangement

1 <u>G</u> 1	48	2 G
1Y1 2	47]1A1
1Y2 3	46	1A2
GND 4	45	GND
1Y3 5	44	1A3
1Y4 6	43	1A4
V _{CC} 7	42	Vcc
2Y1 8	41	2A1
2Y2 9	40	2A2
GND 10	39	GND
2Y3 11	38	2A3
2Y4 12	37	2A4
3Y1 13	36	3A1
3Y2 14	35	3A2
GND 15		GND
3Y3 16	33	3A3
3Y4 17		3A4
V _{CC} 18		Vcc
4Y1 19	30	4A1
4Y2 20		4A2
GND 21	28	GND
4Y3 22	27	4A3
4Y4 23		4A4
4 <u>G</u> 24	25	3 G
	(Top view)	

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V _{CC}	–0.5 to 7.0	V	
Input voltage	VI	–0.5 to 7.0	V	
Output voltage	Vo	–0.5 to 7.0	V	Output "Z" or V _{CC} : OFF
		–0.5 to V _{CC} +0.5		Output "H" or "L"
Input diode current	I _{IK}	-50	mA	V ₁ < 0
Output diode current	I _{OK}	-50	mA	V ₀ < 0
Output current	Ιo	±50	mA	
V _{CC} , GND current	I _{CC} or I _{GND}	±100	mA	
Storage temperature	Tstg	-65 to 150	°C	

Note: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.


Recommended Operating Conditions

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	Vcc	2.7 to 5.5	V	At operation
Input voltage	VI	0 to 5.5	V	
Output voltage	Vo	0 to 5.5	V	Output "Z" or V _{CC} : OFF
		0 to V _{CC}		Output "H" or "L"
Output current	I _{OH}	-12	mA	V _{CC} = 2.7 V
		-24 ^{*1}		$V_{CC} = 3.0$ to 5.5 V
	IOL	12	mA	V _{CC} = 2.7 V
		24 ^{*1}		V_{CC} = 3.0 to 5.5 V
Input rise / fall time	t _r , t _f	0 to 6	ns / V	
Operating temperature	Та	-40 to +85	°C	
	Id	-40 10 +65	U	

Note: 1. Duty cycle $\leq 50\%$

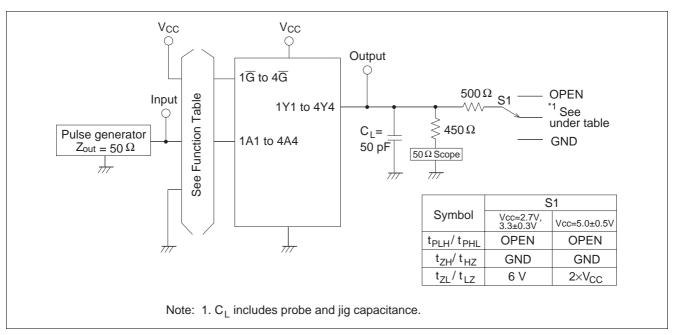
Logic Diagram

Electrical Characteristics

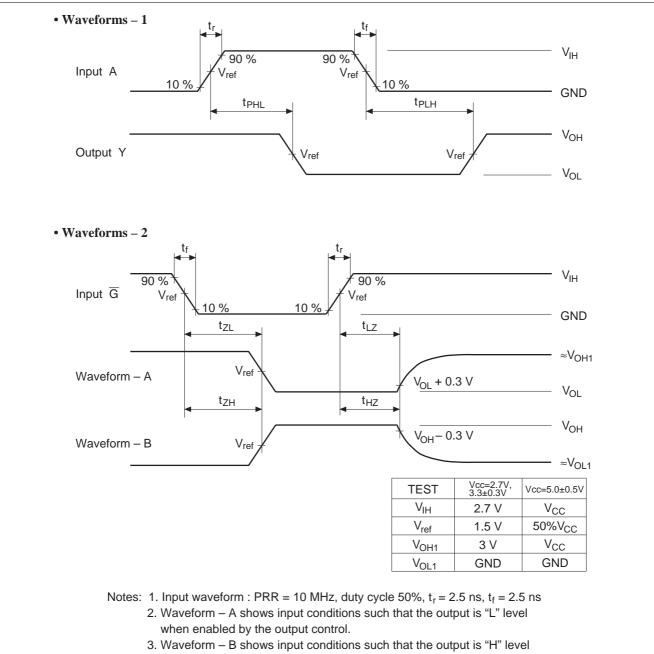
							$(Ta = -40 \text{ to } 85^{\circ}\text{C})$
Item	Symbol	V _{cc} (V)	Min	Тур	Max	Unit	Test Conditions
Input voltage	VIH	2.7 to 3.6	2.0		_	V	
		4.5 to 5.5	V _{CC} ×0.7	_	_		
	VIL	2.7 to 3.6		_	0.8	V	
		4.5 to 5.5	_	—	V _{CC} ×0.3		
Output voltage	V _{OH}	2.7 to 5.5	V _{CC} -0.2	—	—	V	I _{OH} = -100 μA
		2.7	2.2	—	—		I _{OH} = -12 mA
		3.0	2.4	—	—		
		3.0	2.2	_	_		$I_{OH} = -24 \text{ mA}$
		4.5	3.8	_	_		
	V _{OL}	2.7 to 5.5		_	0.2	V	I _{OL} = 100 μA
		2.7	_	_	0.4		I _{OL} = 12 mA
		3.0	_	_	0.55		I _{OL} = 24 mA
		4.5		_	0.55		
Input current	I _{IN}	0 to 5.5	_	—	±5	μΑ	$V_{IN} = 0$ to 5.5 V
Off state output	l _{oz}	2.7 to 5.5	—	—	±5	μA	$V_{OUT} = 0$ to 5.5 V
current	IOZPU	0 to 1.5	_	_	±5		$V_{OUT} = 0.5 \text{ to } 5.5 \text{ V},$
	IOZPD	1.5 to 0	_	_	±5		Output enable = don't care
Output leak current	I _{OFF}	0	_	_	±5	μA	V_{IN} or $V_O = 5.5 V$
Quiescent supply	Icc	2.7 to 3.6	_	_	225	μA	$V_{IN} = 3.6$ to 5.5 V ^{*1} , $I_0 = 0$
current		2.7 to 5.5	_	_	350	_	$V_{IN} = V_{CC}$ or GND
	ΔI_{CC}	2.7 to 3.6	_	_	500	μA	V_{IN} = one input at (V _{CC} -0.6) V,
							other inputs at V_{CC} or GND
Input capacitance	CIN	3.3	_	4.1	—	pF	$V_{IN} = V_{CC}$ or GND
Output capacitance	Co	3.3	_	8.1	_	pF	$V_{OUT} = V_{CC} \text{ or } GND$

Note: 1. This applies in the disabled state only.

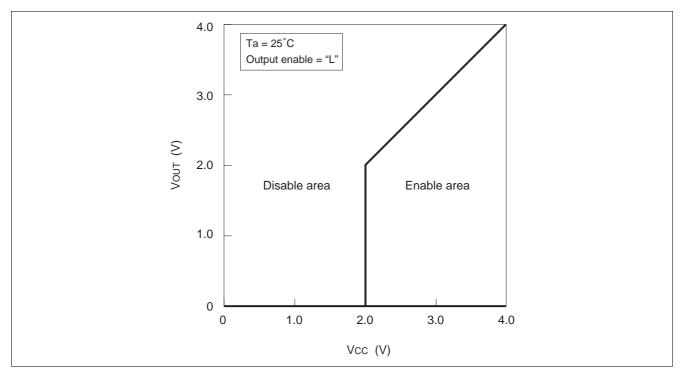
Switching Characteristics

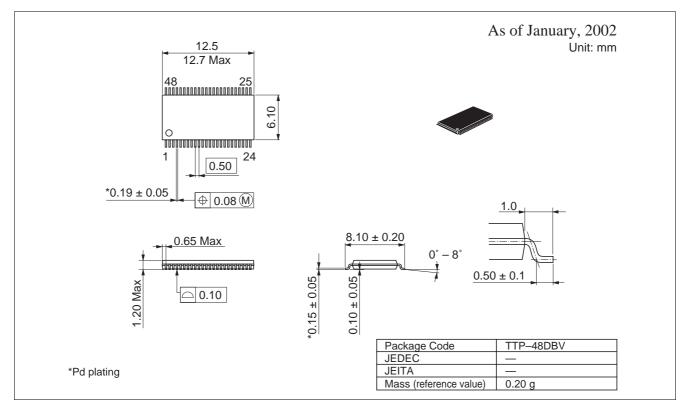

							$(Ta = -40 \text{ to } 85^{\circ}C)$	
ltem	Symbol	V _{cc} (V)	Min	Тур	Max	Unit	FROM (Input)	TO (Output)
Propagation delay time	t _{PLH}	2.7		_	5.3	ns	А	Y
	t _{PHL}	3.3±0.3	1.1	_	4.7			
		5.0±0.5			4.2			
Output enable time	t _{zH}	2.7		_	6.2	ns	G	Y
	t _{ZL}	3.3±0.3	1.0	_	5.0			
		5.0±0.5	_	_	4.5			
Output disable time	t _{HZ}	2.7		_	7.4	ns	G	Y
	t _{LZ}	3.3±0.3	1.8	_	6.3			
		5.0±0.5			4.7			
Between output pin skew *1	t _{OSLH}	2.7		_	_	ns		
	toshl	3.3±0.3		_	1.0			
		5.0±0.5		_	1.0			

Note: 1. This parameter is characterized but not tested.


 $t_{\text{OSLH}} = |t_{\text{PLHm}} - t_{\text{PLHn}}|, \ t_{\text{OSHL}} = |t_{\text{PHLm}} - t_{\text{PHLn}}|$

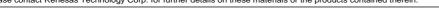
Test Circuit




when enabled by the output control.

Power up / down Characteristics

Package Dimensions



Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

- therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors.
 Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as total system before making a final decision on the applicability of the information and products.
 5. Renesas Technology Corp. emiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. use.
- use.
 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

http://www.renesas.com

RENESAS SALES OFFICES

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited. Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001