

HD74LVC1G98

Configurable Multiple-Function Gate

REJ03D0013-0400Z Rev.4.00 Jun. 30, 2004

Description

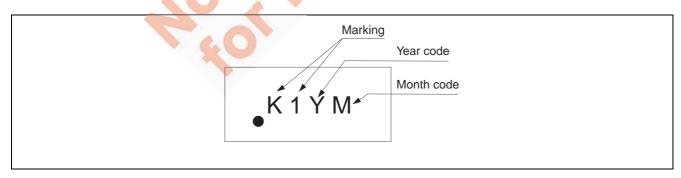
The HD74LVC1G98 has configurable multiple—function gate in a 6-pin package. The Output state is determined by eight patterns of 3-bit input. The user can choose the logic functions AND, NAND, OR, NOR, INVERTER, Non—Inverted Buffer, Data Selector. Low voltage and high-speed operation is suitable for the battery powered products (e.g., notebook computers), and the low power consumption extends the battery life.

Features

• The basic gate function is lined up as Renesas uni logic series.

• Supply voltage range: 1.65 to 5.5 V Operating temperature range: -40 to +85°C

• All inputs V_{IH} (Max.) = 5.5 V (@V_{CC} = 0 V to 5.5 V) All outputs V_{O} (Max.) = 5.5 V (@V_{CC} = 0 V)

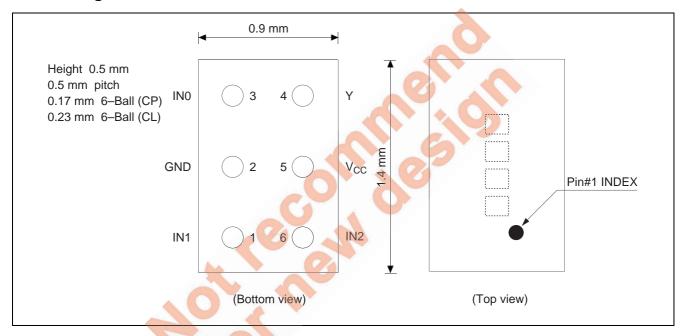

• Output current: $\pm 4 \text{ mA } (@V_{CC} = 1.65 \text{ V})$ $\pm 8 \text{ mA } (@V_{CC} = 2.3 \text{ V})$ $\pm 24 \text{ mA } (@V_{CC} = 3.0 \text{ V})$ $\pm 32 \text{ mA } (@V_{CC} = 4.5 \text{ V})$

• All the logical input has hysteresis voltage for the slow transition.

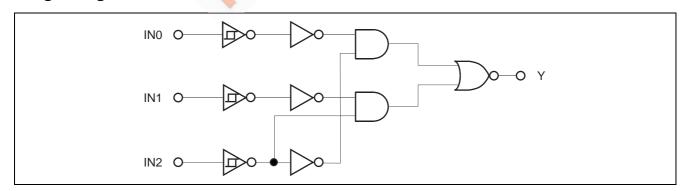
• Ordering Information

Part Name	Package Type	Package Code	Package Abbreviation	Taping Abbreviation (Quantity)
HD74LVC1G98CPE	WCSP-6 pin	TBS-6V	CP	E (3,000 pcs/reel)
HD74LVC1G98CLE		TBS-6AV	CL	

Article Indication


Function Table

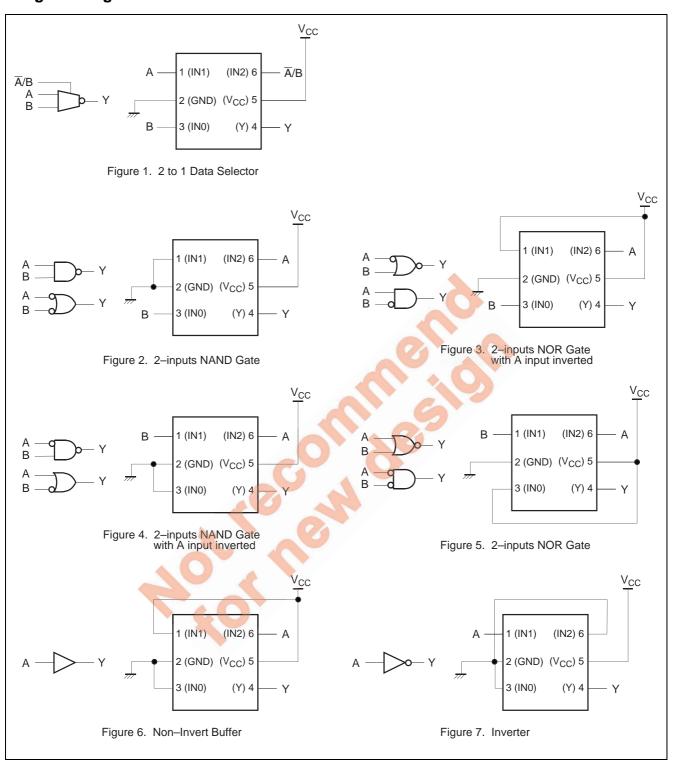
	Output		
IN2	IN1	IN0	Υ
L	L	L	Н
L	L	Н	Н
L	Н	L	L
L	Н	Н	L
Н	L	L	Н
Н	L	Н	L
Н	Н	L	Н
Н	Н	Н	L


H: High level

L: Low level

Pin Arrangement

Logic Diagram



Function Selection Table

Logic Function	Figure No.
2 to 1 data Selector	1
2-inputs NAND	2
2-inputs NOR with one input inverted	3
2-inputs AND with one input inverted	3
2-inputs NAND with one input inverted	4
2-inputs OR with one input inverted	4
2-inputs NOR	5
Non-Invert Buffer	6
Inverter	7

Logic Configurations

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Test Conditions
Supply voltage range	V _{CC}	-0.5 to 6.5	V	
Input voltage range *1	Vı	-0.5 to 6.5	V	
Output voltage range *1, 2	Vo	-0.5 to V _{CC} + 0.5	V	Output : H or L
		-0.5 to 6.5		V _{CC} : OFF
Input clamp current	I _{IK}	-50	mA	V _I < 0
Output clamp current	I _{OK}	-50	mA	V _O < 0
Continuous output current	I _O	±50	mA	$V_O = 0$ to V_{CC}
Continuous current through V _{CC} or GND	I _{CC} or I _{GND}	±100	mA	
Package Thermal impedance	θ_{ja}	143	°C/W	СР
		123		CL
Storage temperature	Tstg	-65 to 150	°C	

Notes: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore no two of which may be realized at the same time.

- 1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- 2. This value is limited to 5.5 V maximum.

Recommended Operating Conditions

Item	Symbol	Min	Max	Unit	Conditions
Supply voltage range	Vcc	1.65	5.5	V	
Input voltage range	Vı	0	5.5	V	
Output voltage range	Vo	0	Vcc	V	
Output current	I _{OL}	_0	4	mA	$V_{CC} = 1.65 \text{ V}$
			8		$V_{CC} = 2.3 \text{ V}$
		- \	16		$V_{CC} = 3.0 \text{ V}$
	40		24		
		-	32		$V_{CC} = 4.5 \text{ V}$
	I _{OH}		-4		$V_{CC} = 1.65 \text{ V}$
			-8		$V_{CC} = 2.3 \text{ V}$
			-16		$V_{CC} = 3.0 \text{ V}$
		_	-24		
	60		-32		$V_{CC} = 4.5 \text{ V}$
Input transition rise or fall rate	Δt / Δν	0	20	ns / V	$V_{CC} = 1.65 \text{ to } 1.95 \text{ V},$
					2.3 to 2.7 V
		0	10	_	$V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$
		0	5		$V_{CC} = 4.5 \text{ to } 5.5 \text{ V}$
Operating free-air temperature	Ta	-40	85	°C	

Note: Unused or floating inputs must be held high or low.

Electrical Characteristics

 $Ta = -40 \text{ to } 85^{\circ}\text{C}$

Item	Symbol	V _{CC} (V)	Min	Тур	Max	Unit	Test condition
Threshold voltage	V_T^+	1.8	0.8	_	1.4	V	
		2.5	1.2	_	1.7		
		3.3	1.6	_	2.3		
		5.0	2.3	_	3.0		
	V _T	1.8	0.4	_	0.7		
		2.5	0.6	_	1.0		
		3.3	0.9	_	1.4		
		5.0	1.5	_	2.0		
	ΔV_T	1.8	0.4	_	0.7		
		2.5	0.4	_	0.8	<u></u>	
		3.3	0.4	_	0.9	<u></u>	
		5.0	0.4	_	1.0		
Output voltage	V_{OH}	1.65 to 5.5	V _{CC} -0.1		_	V	$I_{OH} = -100 \mu A$
		1.65	1.2		_		$I_{OH} = -4 \text{ mA}$
		2.3	1.9	_			$I_{OH} = -8 \text{ mA}$
		3.0	2.4	_	-		$I_{OH} = -16 \text{ mA}$
			2.3			A	$I_{OH} = -24 \text{ mA}$
		4.5	3.8				$I_{OH} = -32 \text{ mA}$
	V_{OL}	1.65 to 5.5	_	-	0.1		$I_{OL} = 100 \mu A$
		1.65		-	0.45		$I_{OL} = 4 \text{ mA}$
		2.3			0.3	<u></u>	$I_{OL} = 8 \text{ mA}$
		3.0	-	-	0.4		$I_{OL} = 16 \text{ mA}$
					0.55		$I_{OL} = 24 \text{ mA}$
		4.5		. –	0.55		$I_{OL} = 32 \text{ mA}$
Input current	I _{IN}	0 to 5.5		_	±5	μΑ	$V_{IN} = 5.5 \text{ V or GND}$
Quiescent	Icc	5.5	- 1		10	μΑ	$V_{IN} = V_{CC}$ or GND,
supply current							I _O = 0
	Δ lcc	3 to 5.5	AU	_	500		One input at V _{CC} -0.6 V,
	1						Other input at V _{CC} or GND
Output leakage current	loff	0		_	±10	μΑ	V_{IN} or $V_O = 0$ to 5.5 V
Input capacitance	C _{IN}	3.3	_	3.5	_	pF	$V_{IN} = V_{CC}$ or GND

Note: For conditions shown as Min or Max, use the appropriate values under recommended operating conditions.

Switching Characteristics

 $V_{CC}=1.8{\pm}0.15~V$

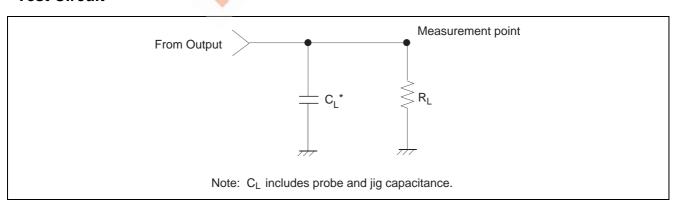
		Ta = -40	to 85°C			FROM	ТО
Item	Symbol	Min	Max	Unit	Test Conditions	(Input)	(Output)
Propagation delay time	t _{PLH} t _{PHL}	3.2	14.4		$C_L = 30 \text{ pF},$ $R_L = 1.0 \text{ k}\Omega$	IN	Y

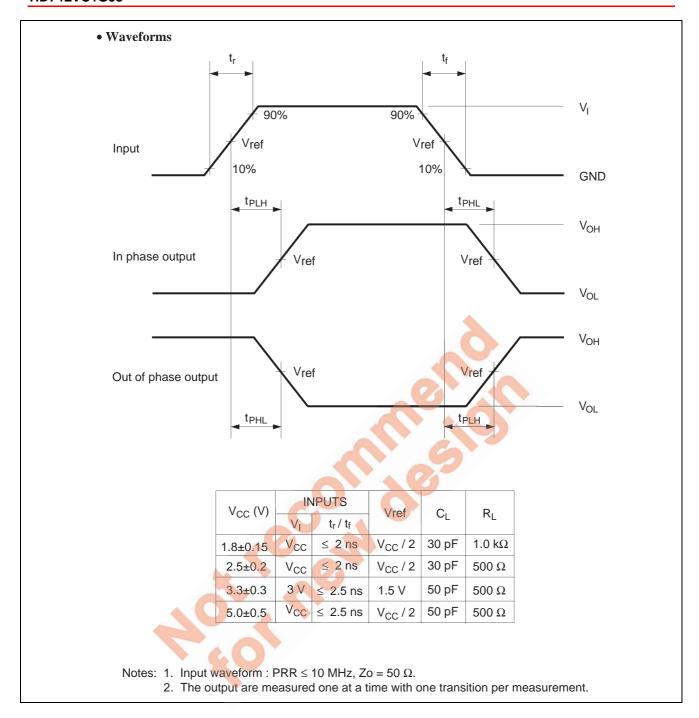
 $V_{CC}=2.5{\pm}0.2~V$

		Ta = -40) to 85°C			FROM	ТО
Item	Symbol	Min	Max	Unit	Test Conditions	(Input)	(Output)
	t _{PLH} t _{PHL}	2.0	8.3		$C_L = 30 \text{ pF},$ $R_L = 500 \Omega$	IN	Y

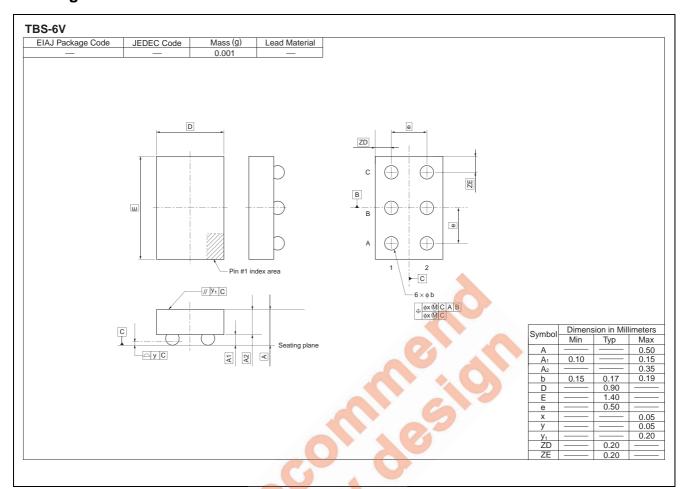
 $V_{CC} = 3.3 \pm 0.3 \text{ V}$

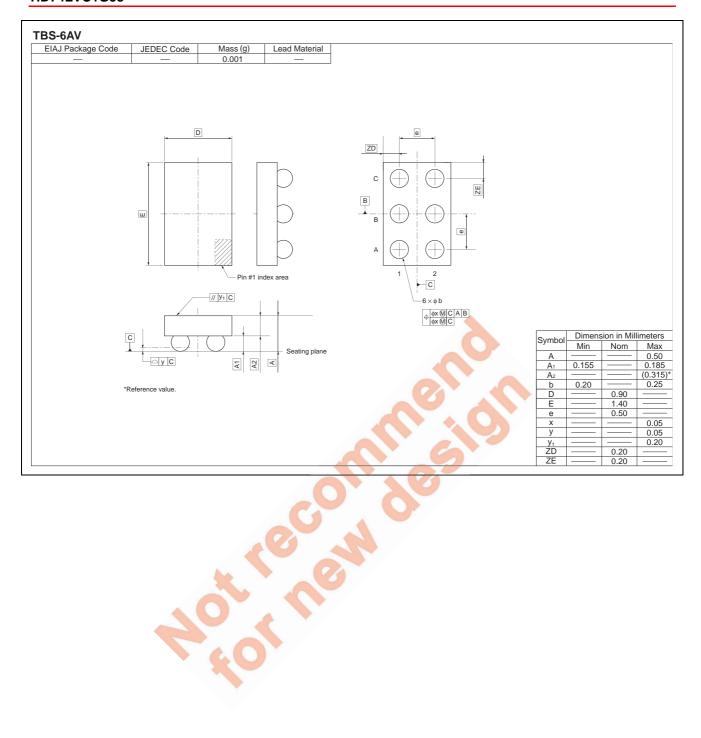
		Ta = -40) to 85°C			FROM	ТО
Item	Symbol	Min	Max	Unit	Test Conditions	(Input)	(Output)
1 ' 0	t _{PLH} t _{PHL}	1.5	6.3		$C_L = 50 \text{ pF},$ $R_L = 500 \Omega$	IN	Υ


 $V_{CC} = 5.0 \pm 0.5 \text{ V}$


		Ta = -40) to 85°C			* OV	FROM	ТО
Item	Symbol	Min	Max		Unit	Test Conditions	(Input)	(Output)
	t _{PLH} t _{PHL}	1.1	5.1	ns		$C_L = 50 \text{ pF},$ $R_L = 500 \Omega$	IN	Y

Operating Characteristics


			13	Ta = 25°C			
Item	Symbol	V _{cc} (V)	Min	Тур	Max	Unit	Test Conditions
Power dissipation capacitance	C _{PD}	1.8		23	_	pF	f = 10 MHz
	20	2.5	-	23	_		
	9 0	3.3	_	23	_		
		5.0		26	_		


Test Circuit

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

- therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

 The information described here may contain technical inaccuracies or typographical errors.
 Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 S. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- use.
 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

http://www.renesas.com

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001