## HD74LV4066A

## Quad. Analog Switches / Quad. Multiplexers <br> HITACHI

ADE-205-285 (Z)
1st Edition
April 1999

## Description

The HD74LV4066A handles both analog and digital signals, and enables signals of either type with amplitudes of up to 5.5 V (peak) to be transmitted in either direction (at $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 5.5 V ).
Each switch section has its own enable input control (C). A high-level voltage applied to C turns on the associated switch section.
Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

## Features

- $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ to 5.5 V operation
- All inputs $\mathrm{V}_{\mathrm{IH}}($ Max. $)=5.5 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}\right.$ to 5.5 V$)$


## Function Table

| Control | Switch |
| :--- | :--- |
| L | OFF |
| $H$ | ON |

Note: H: High level
L: Low level

## HD74LV4066A

## Pin Arrangement


(Top view)

## Absolute Maximum Ratings

| Item | Symbol | Ratings | Unit | Conditions |
| :---: | :---: | :---: | :---: | :---: |
| Supply voltage range | $\mathrm{V}_{\text {cc }}$ | -0.5 to 7.0 | V |  |
| Input voltage range*1 | $V_{1}$ | -0.5 to 7.0 | V |  |
| Output voltage range*1,2 | $\mathrm{V}_{0}$ | -0.5 to $\mathrm{V}_{\mathrm{cc}}+0.5$ | V | Output: H or L |
| Input clamp current | $\mathrm{I}_{\text {IK }}$ | -20 | mA | $V_{1}<0$ |
| Output clamp current | $\mathrm{I}_{\text {ок }}$ | $\pm 50$ | mA | $\mathrm{V}_{0}<0$ or $\mathrm{V}_{0}>\mathrm{V}_{\mathrm{cc}}$ |
| Continuous output current | 1 。 | $\pm 25$ | mA | $\mathrm{V}_{\mathrm{o}}=0$ to $\mathrm{V}_{\mathrm{cc}}$ |
| Continuous current through $V_{c c}$ or GND | $\mathrm{I}_{\text {CC }}$ or $\mathrm{I}_{\text {GND }}$ | $\pm 50$ | mA |  |
| Maximum power dissipation at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (in still air) ${ }^{\star 3}$ | $\mathrm{P}_{\text {T }}$ | 785 | mW | SOP |
|  |  | 500 |  | TSSOP |
| Storage temperature | Tstg | -65 to 150 | ${ }^{\circ} \mathrm{C}$ |  |

Notes: The absolute maximum ratings are values which must not individually be exceeded, and furthermore, no two of which may be realized at the same time..

1. The input and output voltage ratings may be exceeded even if the input and output clamp-current ratings are observed.
2. This value is limited to 5.5 V maximum.
3. The maximum package power dissipation was calculated using a junction temperature of $150^{\circ} \mathrm{C}$.

## Recommended Operating Conditions

| Item | Symbol | Min | Max | Unit | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply voltage range | $\mathrm{V}_{\text {cc }}$ | $2.0 * 1$ | 5.5 | V |  |
| Input voltage range | $V_{1}$ | 0 | 5.5 | V |  |
| Output voltage range | $\mathrm{V}_{10}$ | 0 | $\mathrm{V}_{\text {cc }}$ | V |  |
| Input transition rise or fall rate | $\Delta t / \Delta v$ | 0 | 200 | $\mathrm{ns} / \mathrm{V}$ | $\mathrm{V}_{\mathrm{CC}}=2.3$ to 2.7 V |
|  |  | 0 | 100 |  | $\mathrm{V}_{C C}=3.0$ to 3.6 V |
|  |  | 0 | 20 |  | $\mathrm{V}_{\text {CC }}=4.5$ to 5.5 V |
| Operating free-air temperature | Ta | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |  |

Notes: Unused or floating inputs must be held high or low.

1. With the supply voltage at or around 2 V , the analog switch on-state resistance loses linearity significantly. It is recommended that only digital signals be transmitted at these low supply voltages.

## HD74LV4066A

Logic Diagram


## DC Electrical Characteristics

| Item | Symbol | $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$ | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ |  |  | $\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$ |  | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max | Min | Max |  |  |
| Input voltage | $\mathrm{V}_{\mathrm{IH}}$ | 2.0 | - | - | - | 1.5 | - | V |  |
|  |  | 2.3 to 2.7 | - | - | - | $\mathrm{V}_{\mathrm{cc}} \times 0.7$ | - |  |  |
|  |  | 3.0 to 3.6 | - | - | - | $\mathrm{V}_{\mathrm{CC}} \times 0.7$ | - |  |  |
|  |  | 4.5 to 5.5 | - | - | - | $\mathrm{V}_{\mathrm{CC}} \times 0.7$ | - |  |  |
|  | VIL | 2.0 | - | - | - | - | 0.5 |  |  |
|  |  | 2.3 to 2.7 | - | - | - | - | $\mathrm{V}_{\mathrm{CC}} \times 0.3$ |  |  |
|  |  | 3.0 to 3.6 | - | - | - | - | $\mathrm{V}_{\mathrm{Cc}} \times 0.3$ |  |  |
|  |  | 4.5 to 5.5 | - | - | - | - | $\mathrm{V}_{C C} \times 0.3$ |  |  |
| On-state switch resistance | $\mathrm{R}_{\text {ON }}$ | 2.3 | - | 60 | 180 | - | 225 | $\Omega$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{T}}=1 \mathrm{~mA} \end{aligned}$ |
|  |  | 3.0 | - | 50 | 150 | - | 190 |  |  |
|  |  | 4.5 | - | 40 | 75 | - | 100 |  |  |
| Peak on resistance | $\mathrm{R}_{\mathrm{ON}(\mathrm{P})}$ | 2.3 | - | 250 | 500 | - | 600 | $\Omega$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{T}}=1 \mathrm{~mA} \end{aligned}$ |
|  |  | 3.0 | - | 100 | 180 | - | 225 |  |  |
|  |  | 4.5 | - | 50 | 100 | - | 125 |  |  |
| Difference of on-state resistance between switches | $\Delta \mathrm{R}_{\text {ON }}$ | 2.3 | - | 20 | 30 | - | 40 | $\Omega$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{H}} \\ & \mathrm{I}_{\mathrm{T}}=1 \mathrm{~mA} \end{aligned}$ |
|  |  | 3.0 | - | 10 | 20 | - | 30 |  |  |
|  |  | 4.5 | - | 7 | 15 | - | 20 |  |  |
| Off-state switch leakage current | Is (OFF) | 5.5 | - | - | $\pm 0.1$ | - | $\pm 1.0$ | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\text {OUT }}= \\ & \mathrm{GND} \text { or } \mathrm{V}_{\text {IN }}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$ |
| On-state switch leakage current | Is (ON) | 5.5 | - | - | $\pm 0.1$ | - | $\pm 1.0$ | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$ |
| Input current | $\mathrm{I}_{\text {IN }}$ | 0 to 5.5 | - | - | $\pm 0.1$ | - | $\pm 1.0$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND |
| Quiescent supply current | $\mathrm{I}_{\mathrm{CC}}$ | 5.5 | - | - | - | - | 20 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND |

Note: For conditions shown as Min or Max use the appropriate values under recommended operating conditions.

## Switching Characteristics

- $V_{C C}=2.5 \pm 0.2 \mathrm{~V}$

| Item | Symbol | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ |  |  | $\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$ |  | Unit | Test Conditions |  | FROM (Input) | TO (Output) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Max |  |  |  |  |  |
| Propagation delay time | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$ | - | 2.0 | 10.0 | - | 16.0 | ns | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | A or B | B or A |
|  |  | - | 5.0 | 12.0 | - | 18.0 |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |  |
| Enable time | $\begin{aligned} & \mathrm{t}_{\mathrm{zH}} \\ & \mathrm{t}_{\mathrm{zL}} \end{aligned}$ | - | 6.0 | 15.0 | - | 20.0 | ns | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ | C | A or B |
|  |  | - | 8.0 | 25.0 | - | 32.0 |  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
| Disable time | $\begin{aligned} & \mathrm{t}_{\mathrm{Hz}} \\ & \mathrm{t}_{\mathrm{LZ}} \end{aligned}$ | - | 7.0 | 15.0 | - | 23.0 | ns | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ | C | A or B |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | - | 11.0 | 25.0 | - | 32.0 |  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |

- $V_{C C}=3.3 \pm 0.3 \mathrm{~V}$

| Item | Symbol | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ |  |  | $\mathrm{Ta}=\mathbf{- 4 0}$ to $85^{\circ} \mathrm{C}$ |  | Unit | Test Conditions |  | FROM (Input) | TO (Output) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Max |  |  |  |  |  |
| Propagation delay time | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$ | - | 1.5 | 6.0 | - | 10.0 | ns | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | A or B | B or A |
|  |  | - | 4.0 | 9.0 | - | 12.0 |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |  |
| Enable time | $\begin{aligned} & \mathrm{t}_{\mathrm{zH}} \\ & \mathrm{t}_{\mathrm{zL}} \end{aligned}$ | - | 4.0 | 11.0 | - | 15.0 | ns | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ | C | $A$ or B |
|  |  | - | 6.0 | 18.0 | - | 22.0 |  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
| Disable time | $\begin{aligned} & t_{\mathrm{Hz}} \\ & \mathrm{t}_{\mathrm{Lz}} \end{aligned}$ | - | 5.0 | 11.0 | - | 15.0 | ns | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ | C | $A$ or B |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | - | 8.0 | 18.0 | - | 22.0 |  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |

## Switching Characteristics (cont)

- $V_{C C}=\mathbf{5 . 0} \pm \mathbf{0 . 5} \mathrm{V}$

| Item | Symbol | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ |  |  | $\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$ |  | Unit | Test Conditions |  | FROM (Input) | TO (Output) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Max |  |  |  |  |  |
| Propagation delay time | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\text {PHLL }} \end{aligned}$ | - | 1.0 | 4.0 | - | 7.0 | ns | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | A or B | B or A |
|  |  | - | 3.0 | 6.0 | - | 8.0 |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |  |
| Enable time | $\begin{aligned} & \mathrm{t}_{\mathrm{zH}} \\ & \mathrm{t}_{\mathrm{zL}} \end{aligned}$ | - | 3.0 | 7.0 | - | 10.0 | ns | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | $C_{L}=15 \mathrm{pF}$ | C | A or B |
|  |  | - | 5.0 | 12.0 | - | 16.0 |  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
| Disable time | $\begin{aligned} & \mathrm{t}_{\mathrm{Hz}} \\ & \mathrm{t}_{\mathrm{LZ}} \end{aligned}$ | - | 4.0 | 7.0 | - | 10.0 | ns | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ | C | A or B |
|  |  | - | 6.0 | 12.0 | - | 16.0 |  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |

## Switching Characteristics (cont)

| Item | Symbol | $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$ | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ |  |  | Unit | Test Conditions | FROM (Input) | TO (Output) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |  |  |
| Control input capacitance | $\mathrm{C}_{\text {IC }}$ | - | - | 3.5 | - | pF |  |  |  |
| Switch terminal capacitance | $\mathrm{C}_{1 / 0}$ | - | - | 6.0 | - | pF |  |  |  |
| Feedthrough capacitance | $\mathrm{C}_{\text {T }}$ | - | - | 0.5 | - | pF |  |  |  |
| Power dissipation capacitance | $\mathrm{C}_{\text {PD }}$ | - | - | 4.0 | - | pF |  |  |  |
| Frequency response (Switch ON) |  | 2.3 | - | 30.0 | - | MHz | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}= \\ & 600 \Omega \\ & \text { Adjust } \mathrm{f}_{\text {in }} \text { voltage to } \\ & \text { obtain } 0 \mathrm{dBm} \text { at } \\ & \text { output when } \mathrm{f}_{\text {in }} \text { is } 1 \\ & \mathrm{MHz} \text { (sine wave). } \\ & \text { Increase } \mathrm{f}_{\text {in }} \\ & \text { frequency until the } \\ & \text { dB-meter reads } \\ & -3 \mathrm{dBm} . \\ & 20 \log \left(\mathrm{~V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{I}}\right)=-3 \\ & \mathrm{dBm} \end{aligned}$ | A or B | $B$ or $A$ |
|  |  | 3.0 | - | 35.0 | - |  |  |  |  |
|  |  | 4.5 | - | 50.0 | - |  |  |  |  |
| Crosstalk (Between any switches) |  | 2.3 | - | -45.0 | - | dB | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}= \\ & 600 \Omega \end{aligned}$ <br> Adjust $\mathrm{f}_{\text {in }}$ voltage to obtain 0 dBm at input when $\mathrm{f}_{\mathrm{in}}$ is 1 MHz (sine wave). | A or B | $B$ or $A$ |
|  |  | 3.0 | - | -45.0 | - |  |  |  |  |
|  |  | 4.5 | - | -45.0 | - |  |  |  |  |
| Crosstalk (Control input to signal output) |  | 2.3 | - | 15.0 | - | mV | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}= \\ & 600 \Omega \end{aligned}$ <br> Adjust $R_{L}$ value to obtain <br> 0 A at $\mathrm{I}_{\text {INOUT }}$ when $f_{\text {in }}$ is <br> 1 MHz (square wave). | C | A or B |
|  |  | 3.0 | - | 20.0 | - |  |  |  |  |
|  |  | 4.5 | - | 50.0 | - |  |  |  |  |

## Switching Characteristics (cont)

| Item | Symbol | $\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$ | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ |  |  | Unit | Test Conditions | FROM (Input) | TO (Output) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |  |  |
| Feedthrough attenuation (Switch OFF) |  | 2.3 | - | -40.0 | - | dB | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=600 \Omega$ <br> Adjust $f_{\text {in }}$ voltage to obtain 0 dBm at input when $f_{i n}$ is 1 MHz (sine wave). | A or B | B or A |
|  |  | 3.0 | - | -40.0 | - |  |  |  |  |
|  |  | 4.5 | - | -40.0 | - |  |  |  |  |
| Sine-wave distortion |  | 2.3 | - | 0.1 | - | \% | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}(\text { sine wave }) \\ & \mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=2.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{~V}_{\mathrm{CC}}=3.0 \\ & \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$ | $A$ or B | $B$ or $A$ |
|  |  | 3.0 | - | 0.1 | - |  |  |  |  |
|  |  | 4.5 | - | 0.1 | - |  |  |  |  |

## Test Circuits

RoN: On-state switch resistance


$$
\mathrm{R}_{\mathrm{ON}}=\frac{\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}}{10^{-3}}(\Omega)
$$

Is (OFF): Off-state switch leakage current, Is (ON): On-state switch leakage current


CONDITION 1: $\mathrm{V}_{\mathrm{A}}=0, \mathrm{~V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}}$
CONDITION 2: $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{B}}=0$


## HITACHI

$t_{\text {PLH }}, t_{\text {PHL }}$ : Propagation delay time (from switch input to switch output)


Switching time


| TEST | S 1 | S 2 |
| :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{LZ}} / \mathrm{t}_{\mathrm{ZL}}$ | GND | Vcc |
| $\mathrm{t}_{\mathrm{HZ}} / \mathrm{t}_{\mathrm{ZH}}$ | Vcc | GND |



Frequency response (Switch ON)


Crosstalk (Between any switches)


Crosstalk (Control input to signal output)


Feedthrough attenuation (Switch OFF)


Sine-wave distortion


## HD74LV4066A

## Package Dimensions




| Hitachi Code | FP-14DN |
| :--- | :--- |
| JEDEC | Conforms |
| EIAJ | Conforms |
| Weight (reference value) | 0.13 g |



| Hitachi Code | TTP-14D |
| :--- | :--- |
| JEDEC | - |
| EIAJ | - |
| Weight (reference value) | 0.05 g |

## Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

## HITACHI

## Hitachi, Ltd.

Semiconductor \& Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL NorthAmerica : http:semiconductor.hitachi.com/

Asia (Singapore)
Asia (Taiwan)
Asia (HongKong) Japan
: http://www.hitachi-eu.com/hel/ecg
http://www.has.hitachi.com.sg/grp3/sicd/index.htm
http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
http://www.hitachi.com.hk/eng/bo/grp3/index.htm
http://www.hitachi.co.jp/Sicd/indx.htm

## For further information write to:

Hitachi Semiconductor
America) Inc.
179 East Tasman Drive, San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223

Hitachi Europe GmbH
Electronic components Group Dornacher Stra§e 3
D-85622 Feldkirchen, Munich Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9293000
Hitachi Europe Ltd Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay \#20-00 Hitachi Tower Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.

