RENESAS

HD74HC279 Octal D-type Flip-Flops (with Clear)

REJ03D0605–0200 (Previous ADE-205-483) Rev.2.00 Jan 31, 2006

Description

The latch is ideally suited for use as temporary stage for binary information processing and input/output units. When either \overline{S} or \overline{R} is low, output is dependent on \overline{R} input. When both inputs are high, Output is stored before the indicated steady-state input conditions were established. And when both inputs are low, output is high, but this high level are uncontinuance, if either of input goes high.

Features

- High Speed Operation: t_{pd} (\overline{S} to Q) = 10 ns typ ($C_L = 50 \text{ pF}$)
- High Output Current: Fanout of 10 LSTTL Loads
- Wide Operating Voltage: $V_{CC} = 2 \text{ to } 6 \text{ V}$
- Low Input Current: 1 µA max
- Low Quiescent Supply Current: I_{CC} (static) = 2 μ A max (Ta = 25°C)
- Ordering Information

Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)
HD74HC279FPEL	SOP-16 pin (JEITA)	PRSP0016DH-B (FP-16DAV)	FP	EL (2,000 pcs/reel)
HD74HC279RPEL	SOP-16 pin (JEDEC)	PRSP0016DG-A (FP-16DNV)	RP	EL (2,500 pcs/reel)

Note: Please consult the sales office for the above package availability.

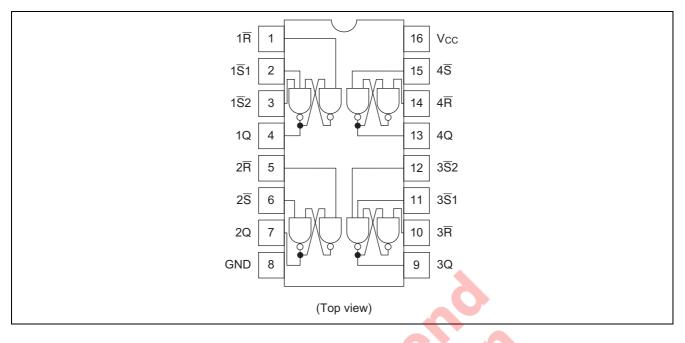
Function Table

Ing	Output	
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	R	Q
н	н	Q ₀
L	Н	Н
Н	L	L
L	L	H* ¹

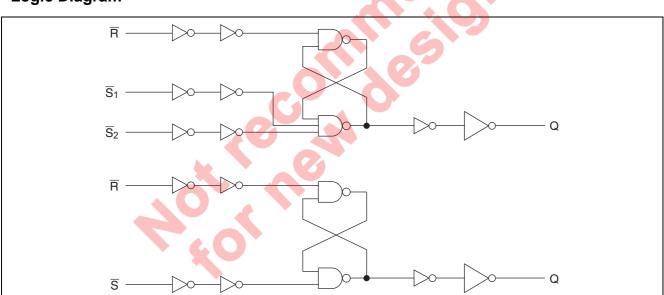
H : High level

L : Low level

 $Q_0: \quad \mbox{The level of Q respectively, before the indicated steady-state input conditions were established.}$


Notes: 1. It is unpredictable, if \overline{S} or \overline{R} goes High.

2. As to latches which has two \overline{S} inputs.


- H: Both of \overline{S} inputs are high.
- L: Either or both of \overline{S} inputs are low.

Pin Arrangement

Absolute Maximum Ratings

ltem	Symbol	Ratings	Unit
Supply voltage range	V _{CC}	-0.5 to 7.0	V
Input / Output voltage	V _{IN} , V _{OUT}	-0.5 to V _{CC} +0.5	V
Input / Output diode current	I _{IK} , I _{OK}	±20	mA
Output current	lo	±25	mA
V _{CC} , GND current	I _{CC} or I _{GND}	±50	mA
Power dissipation	PT	500	mW
Storage temperature	Tstg	-65 to +150	°C

Note: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

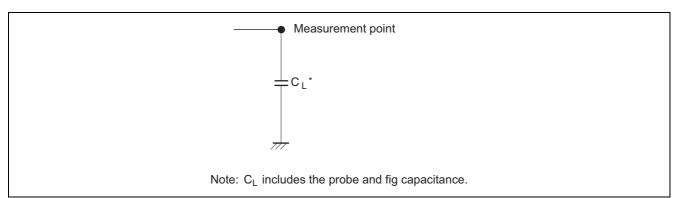
Recommended Operating Conditions

Item	Symbol	Ratings	Unit	Conditions	
Supply voltage	V _{CC}	2 to 6	V		
Input / Output voltage	V _{IN} , V _{OUT}	0 to V _{CC}	V		
Operating temperature	Та	-40 to 85	°C		
Input rise / fall time ^{*1}	t _r , t _f	0 to 1000	ns	$V_{CC} = 2.0 V$	
		0 to 500		$V_{CC} = 4.5 V$	
		0 to 400		$V_{CC} = 6.0 V$	

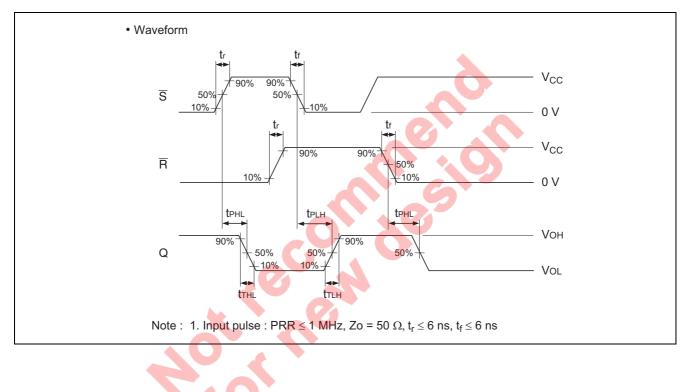
Notes: 1. This item guarantees maximum limit when one input switches. Waveform: Refer to test circuit of switching characteristics.

0

Electrical Characteristics

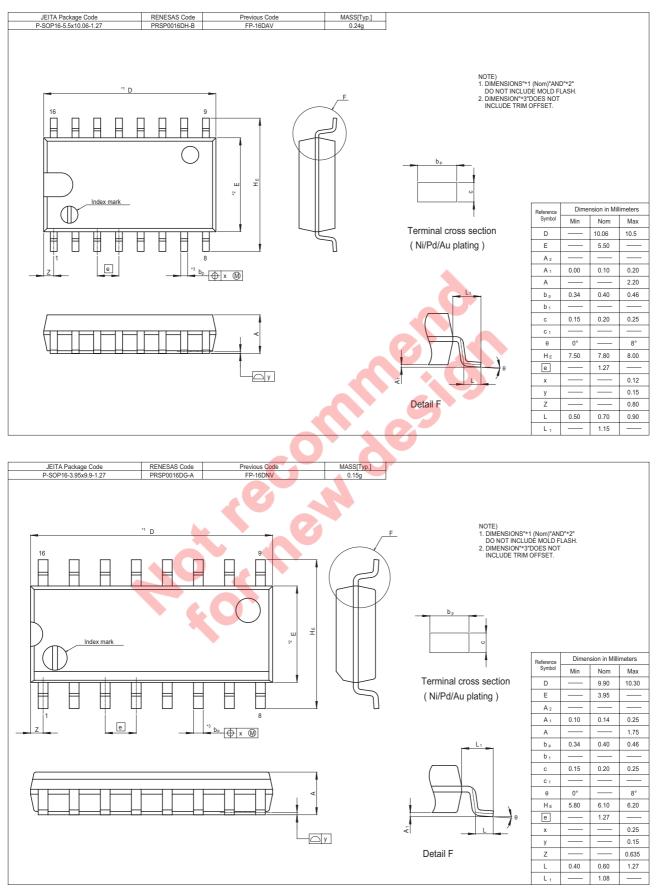

ltom	Symbol	v 00	Т	a = 25°	С	Ta = -40	to+85°C	Unit	Test Conditions
ltem	Symbol	V _{cc} (V)	Min	Тур	Max	Min	Max		Test Conditions
Input voltage	V _{IH}	2.0	1.5		_	1.5	—	V	
		4.5	3.15		_	3.15	—		
		6.0	4.2		_	4.2	_		
	VIL	2.0	_	_	0.5		0.5	V	
		4.5			1.35		1.35		
		6.0	_	_	1.8		1.8		\sim
Output voltage	V _{OH}	2.0	1.9	2.0	_	1.9		V	Vin = V_{IH} or V_{IL} $I_{OH} = -20 \ \mu A$
		4.5	4.4	4.5	_	4.4	-	\mathbb{C}	
		6.0	5.9	6.0	—	5.9			
		4.5	4.18	_	-	4.13			$I_{OH} = -4 \text{ mA}$
		6.0	5.68	—		5.63	4		I _{OH} = -5.2 mA
	V _{OL}	2.0	_	0.0	0.1		0.1	V	$Vin = V_{IH} \text{ or } V_{IL} I_{OL} = 20 \ \mu A$
		4.5	_	0.0	0.1	Z	0.1		
		6.0	-	0.0	0.1	—	0.1		
		4.5	4	-	0.26	-	0.33		$I_{OL} = 4 \text{ mA}$
		6.0		-	0.26	_	0.33		$I_{OL} = 5.2 \text{ mA}$
Input current	lin	6.0			±0.1		±1.0	μΑ	$Vin = V_{CC} \text{ or } GND$
Quiescent supply current	I _{CC}	6.0	-		2.0	—	20	μA	Vin = V_{CC} or GND, lout = 0 μ A

Switching Characteristics


$(C_L = 50 \text{ pF}, \text{ Input } t_r = t_f = 6 \text{ ns})$

ltem	Symbol	V _{cc} (V)	Ta = 25°C		Ta = -40 to +85°C		Unit	Test Conditions	
			Min	Тур	Max	Min	Max	Unit	Test conditions
Propagation delay	t _{PLH}	2.0	l		130	_	165	ns	S to Q
time	t _{PHL}	4.5	l	10	26	_	33		
		6.0	l		22	_	28		
	t _{PHL}	2.0	l		120	_	150	ns	R to Q
		4.5	l	12	24	_	30		
		6.0			20	—	26		
Output rise/fall	t _{TLH}	2.0	_	_	75	—	95	ns	
time	t_{THL}	4.5	_	5	15	—	19		
		6.0			13	—	16		
Input capacitance	Cin	_		5	10		10	pF	

Test Circuit



Waveforms

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to

- Nonne page (http://www.renessas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or ther loss resulting from the information contained herein.
 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

http://www.renesas.com

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 205, AZIA Center, No.133 Yincheng Rd (n), Pudong District, Shanghai 200120, China Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510