1-bit to 2-bit Address Driver with 3-state Outputs

HITACHI

ADE-205-221 (Z) Preliminary 1st. Edition July 1998

Description

This 1-bit to 2-bit address driver is designed for 2.3 V to 3.6 V V_{CC} operation. To ensure the high impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current sinking capability of the driver. Active bus hold circuitry is provided to hold unused or floating inputs at a valid logic level. All outputs, which are designed to sink up to 12 mA, include equivalent 26 Ω resistors to reduce overshoot and undreshoot.

Diodes to V_{CC} have been added on the inputs to clamp overshoot.

Features

- $V_{\rm CC} = 2.3 \text{ V}$ to 3.6 V
- Typical V_{OL} ground bounce < 0.8 V (@V_{CC} = 3.3 V, Ta = 25°C)
- Typical V_{OH} undershoot > 2.0 V (@V_{CC} = 3.3 V, Ta = 25°C)
- High output current $\pm 12 \text{ mA} (@V_{CC} = 3.0 \text{ V})$
- Bus hold on data inputs eliminates the need for external pullup / pulldown resistors
- All outputs have equivalent 26 Ω series resistors, so no external resistors are required
- Diode on inputs clamp overshoot

Function Table

Inputs			Outputs	
OE1	OE2	Α	1Yn	2Yn
L	Н	Н	Н	Z
L	Н	L	L	Z
Н	L	Н	Z	Н
Н	L	L	Z	L
L	L	Н	Н	Η
L	L	L	L	L
Н	H	Х	Z	Z

H : High level

L : Low level

X : Immaterial

Z : High impedance

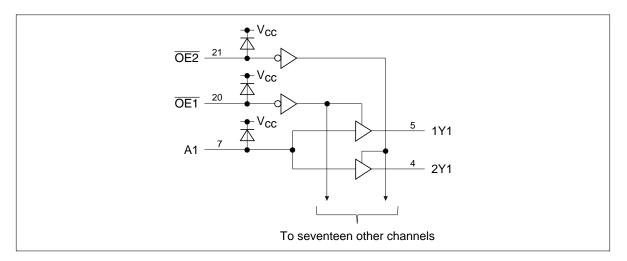
Pin Arrangement

2Y2 1	80 1Y3
1Y2 2	79 2Y3
GND 3	78 GND
2\1	77 1Y4
2Y1 4 1Y1 5	76 2Y4
V 0	
V _{CC} 6 A1 7	75 V _{CC} 74 1Y5
A1 7 A2 8	
GND 9	72 GND
A3 10	71 1Y6
A4 11	70 2Y6
GND 12	69 GND
A5 13	68 1Y7
A6 14	67 2Y7
V _{cc} 15	66 V _{CC}
A7 16	65 1Y8
A8 17	64 2Y8
GND 18	63 GND
A9_ <u>19</u>	62 1Y9
OE1 20	61 2Y9
0E2 21	60 1Y10
A10 22 GND 23	59 2Y10
GND 23	58 GND
A11 24	57 1Y11
A12 25	56 2Y11
V _{CC} 26	55 V _{CC}
A13 27	54 1Y12
A14 28	53 2Y12
GND 29	52 GND
A15 30	51 1Y13
A16 31	50 2Y13
GND 32	49 GND
A17 33	48 1Y14
A18 34	47 2Y14
V _{CC} 35	46 V _{CC}
2Y18 36	45 1Y15
1Y18 37	44 2Y15
GND 38	43 GND
2Y17 39	43 GND 42 1Y16
2Y17 <u>39</u> 1Y17 4 0	41 2Y16
	(Top view)

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions	
Supply voltage	V _{cc}	-0.5 to 4.6	V		
Input voltage ^{*1}	V	-0.5 to 4.6	V		
Output voltage *1, 2	Vo	–0.5 to V _{cc} +0.5	V		
Input clamp current	I _{IK}	-50	mA	V ₁ < 0	
Output clamp current	ut clamp current I _{ок}		mA	$V_{\rm o}$ < 0 or $V_{\rm o}$ > $V_{\rm cc}$	
Continuous output current	I _o	±50	mA	$V_{o} = 0$ to V_{cc}	
V _{cc} , GND current / pin	$I_{\rm CC}$ or $I_{\rm GND}$	±100	mA		
Maximum power dissipation P_{T} at Ta = 55°C (in still air) ^{*3}		1	W	TVSOP	
Storage temperature	T _{stg}	-65 to 150	°C		

Notes: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.


- 1. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 2. This value is limited to 4.6 V maximum.
- 3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

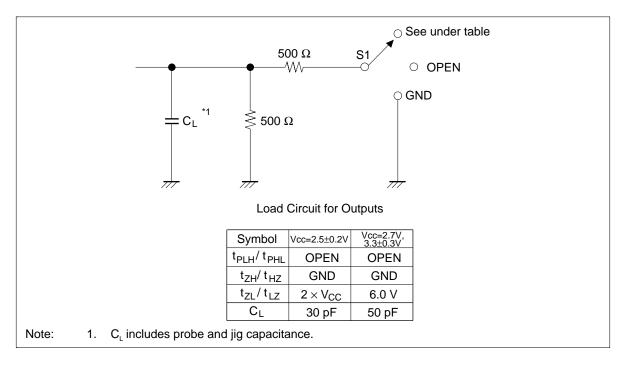
Item	Symbol	Min	Max	Unit	Conditions
Supply voltage	V _{cc}	2.3	3.6	V	
Input voltage	V	0	V _{cc}	V	
Output voltage	Vo	0	V _{cc}	V	
High level output current	I _{OH}		-6	mA	V _{cc} = 2.3 V
		_	-8		$V_{cc} = 2.7 V$
		_	-12		V _{cc} = 3.0 V
Low level output current	I _{ol}	_	6	mA	V _{cc} = 2.3 V
		_	8		$V_{cc} = 2.7 V$
		_	12		V _{cc} = 3.0 V
Input transition rise or fall rate	t/v	0	10	ns / V	
Operating temperature	Ta	-40	85	°C	

Recommended Operating Conditions

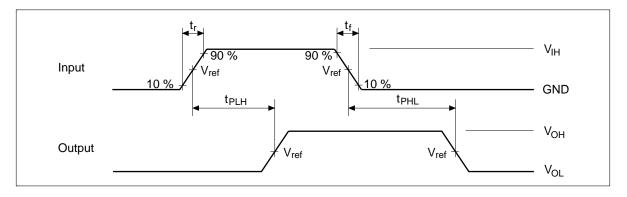
Note: Unused control inputs must be held high or low to prevent them from floating.

Logic Diagram

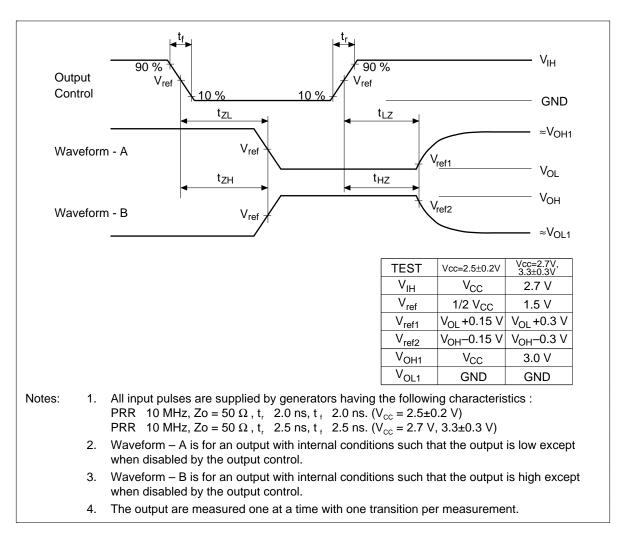
Item	Symbol	V _{cc} (V)	Min	Max	Unit	Test Conditions
Input voltage	V _{IH}	2.3 to 2.7	1.7	_	V	
		2.7 to 3.6	2.0	_	_	
	V _{IL}	2.3 to 2.7		0.7	_	
		2.7 to 3.6	_	0.8	_	
Input diode voltage	V _{IK}	2.3		-1.2	V	$I_1 = -18 \text{ mA}$
		2.3		V _{cc} +1.2	_	I ₁ = 18 mA
Output voltage	V _{OH}	2.3 to 3.6	V _{cc} -0.2	_	V	I _{OH} = -100 μA
		2.3	1.9	_	_	I _{OH} = -4 mA, V _{IH} = 1.7 V
		2.3	1.7		_	I _{OH} = -6 mA, V _{IH} = 1.7 V
		3.0	2.4	_	_	$I_{OH} = -6 \text{ mA}, V_{IH} = 2.0 \text{ V}$
		2.7	2.0		_	I _{OH} = -8 mA, V _{IH} = 2.0 V
		3.0	2.0		_	$I_{OH} = -12 \text{ mA}, V_{IH} = 2.0 \text{ V}$
	V _{OL}	2.3 to 3.6		0.2	_	I _{oL} = 100 μA
		2.3		0.4	_	I _{oL} = 4 mA, V _{IL} = 0.7 V
		2.3		0.55	_	I _{oL} = 6 mA, V _{IL} = 0.7 V
		3.0		0.55	_	I _{oL} = 6 mA, V _{IL} = 0.8 V
		2.7		0.6	_	$I_{_{OL}} = 8 \text{ mA}, V_{_{IL}} = 0.8 \text{ V}$
		3.0		0.8	_	$I_{oL} = 12 \text{ mA}, V_{IL} = 0.8 \text{ V}$
Input current	I _{IN}	3.6		±5	μA	$V_{IN} = V_{CC}$ or GND
	I IN (hold)	2.3	45	_	-	V _{IN} = 0.7 V
		2.3	-45		-	V _{IN} = 1.7 V
		3.0	75		_	V _{IN} = 0.8 V
		3.0	-75		_	V _{IN} = 2.0 V
		3.6		±500	_	$V_{IN} = 0$ to 3.6 V ^{*1}
Off state output current	l _{oz}	3.6		±10	μA	V _{OUT} = V _{CC} or GND
Quiescent supply current	I _{cc}	3.6		40	μA	$V_{IN} = V_{CC}$ or GND
	ΔI_{cc}	3.0 to 3.6	_	750	μA	V_{IN} = one input at (V _{cc} -0.6) V, other inputs at V _{cc} or GND


Electrical Characteristics (Ta = -40 to 85° C)

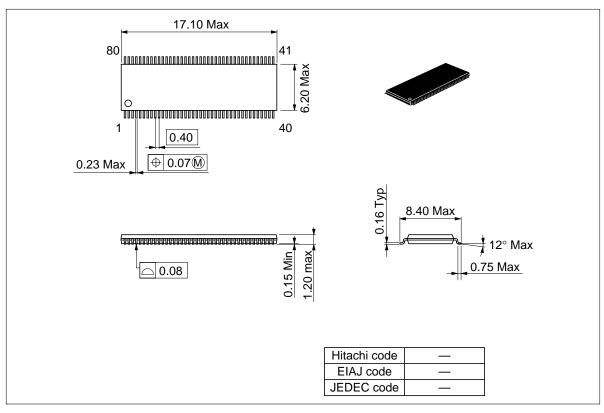
Note: 1. This is the bus hold maximum dynamic current required to switch the input from one state to another.


ltem	Symbol	V _{cc} (V)	Min	Тур	Max	Unit	FROM (Input)	TO (Output)
Propagation delay time	t _{PLH}	2.5±0.2	1.2	_	3.8	ns	А	Y
	t _{PHL}	2.7	—		4.0			
		3.3±0.3	1.7		3.5	_		
Output enable time	t _{zH}	2.5±0.2	1.0		5.7	ns	ŌĒ	Y
	t _{zL}	2.7	—		5.7			
		3.3±0.3	1.0		4.8	_		
Output disable time	t _{HZ}	2.5±0.2	1.0		4.9	ns	ŌĒ	Y
	t _{LZ}	2.7	—	_	5.4			
		3.3±0.3	1.7		5.2	_		
Input capacitance	CIN	3.3	_	4.5	_	pF	Control inputs	
		3.3	_	5.0	_		Data inputs	
Output capacitance	Co	3.3	_	7.5		pF		

Switching Characteristics (Ta = -40 to 85° C)


Test Circuit

Waveforms - 1



Waveforms - 2

Package Dimensions

Unit : mm

Cautions

- Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 NorthAmerica URL http:semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg Europe http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm http://www.hitachi.co.jp/Sicd/indx.htm Japan For further information write to: Hitachi Semiconductor Hitachi Europe GmbH Hitachi Asia Pte. Ltd. (America) Inc. Electronic components Group 16 Collyer Quay #20-00 179 East Tasman Drive, Dornacher Stra§e 3 Hitachi Tower San Jose,CA 95134 D-85622 Feldkirchen, Munich Singapore 049318 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Germany Tel: 535-2100 Tel: <49> (89) 9 9180-0 Fax: 535-1533 Fax: <49> (89) 9 29 30 00

 Fax: <49> (89) 9 29 30 00
 Hita

 Hitachi Europe Ltd.
 Hita

 Electronic Components Group.
 Taip

 Whitebrook Park
 3F,

 Lower Cookham Road
 Tun

 Maidenhead
 Tel:

 Berkshire SL6 8YA, United Kingdom
 Fax

 Tel: <44> (1628) 585000

 Fax: <44> (1628) 778322

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

HITACHI

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.