April 2001

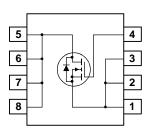
FDS6678A

FAIRCHILD

30V N-Channel PowerTrench[®] MOSFET

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $R_{DS(ON)}$ and fast switching speed.


Applications

DC/DC converter

Features

- 7.5 A, 30 V. $R_{DS(ON)} = 24 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$ $R_{DS(ON)} = 20 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- Low gate charge (13 nC typical)
- High power and current handling capability

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Parameter Drain-Source Voltage		Ratings	Units V	
		30		
Gate-Source Voltage		±12	V	
Drain Current – Continuous	(Note 1a)	7.5	A	
- Pulsed		40		
Power Dissipation for Single Operation	(Note 1a)	2.5	W	
	(Note 1b)	1.2		
	(Note 1c)	1.0		
Operating and Storage Junction Temperature Range		-55 to +150	°C	
-	Drain-Source Voltage Gate-Source Voltage Drain Current – Continuous – Pulsed Power Dissipation for Single Operation	Drain-Source Voltage Gate-Source Voltage Gate-Source Voltage Image: Constraint of the second sec	Drain-Source Voltage 30 Gate-Source Voltage ±12 Drain Current - Continuous 7.5 - Pulsed 40 Power Dissipation for Single Operation (Note 1a) 2.5 (Note 1b) 1.2 (Note 1c) 1.0	

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	50	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	25	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDS6678A	FDS6678A	13"	12mm	2500 units

©2001 Fairchild Semiconductor Corporation

FDS6678A

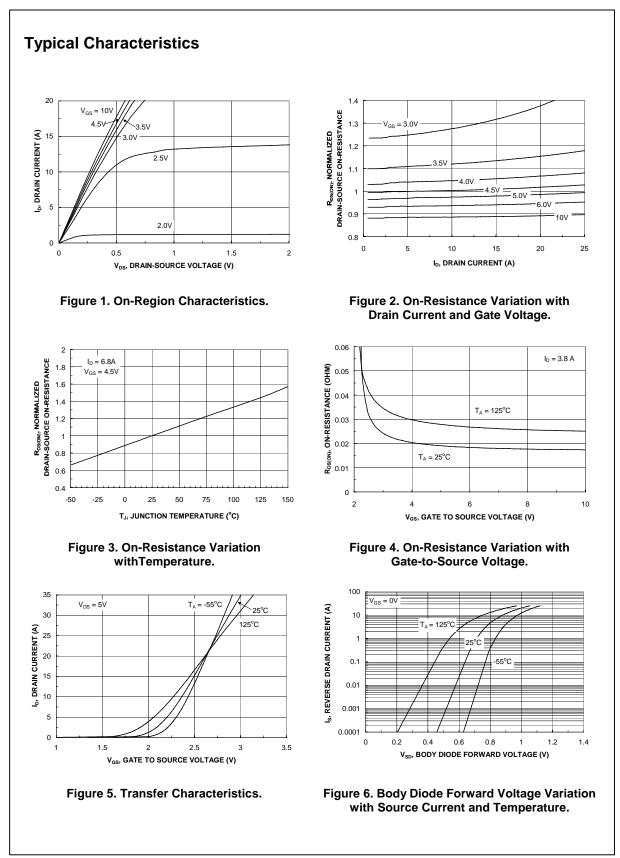
Electric	cal Characteristics	$T_A = 25^{\circ}C$ unless otherwise noted	_	_	_	
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V, I_D = 250 \mu A$	30			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		22		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 24 \text{ V}, V_{\text{GS}} = 0 \text{ V}$			1	μΑ
IGSSF	Gate-Body Leakage, Forward	$V_{GS} = 12 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -12 \text{ V}$, $V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)			•	•	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	0.8	1.4	2	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		- 4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{l} V_{GS} = 4.5 \ V, \ I_D = 6.8 \ A \\ V_{GS} = 4.5 \ V, \ I_D = 6.8 \ A \ T_J = 125^\circ C \\ V_{GS} = 10 \ V, \ I_D = 7.5 \ A, \end{array} $		20 29 18	24 40 20	mΩ
I _{D(on)}	On–State Drain Current	$V_{GS} = 4.5 \text{ V}, V_{DS} = 5 \text{ V}$	40			Α
g fs	Forward Transconductance	$V_{\text{DS}} = 10 \text{ V}, \qquad I_{\text{D}} = 7.5 \text{ A}$		30		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$		1460		pF
Coss	Output Capacitance	f = 1.0 MHz		227		pF
Crss	Reverse Transfer Capacitance			96		pF
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 10 V, I_D = 1 A,$		8	16	ns
tr	Turn–On Rise Time	$V_{GS} = 4.5$ V, $R_{GEN} = 6 \Omega$		9	18	ns
t _{d(off)}	Turn–Off Delay Time			35	58	ns
t _f	Turn–Off Fall Time	7		7	14	ns
Qg	Total Gate Charge	$V_{DS} = 15 V$, $I_D = 7.5 A$,		13	21	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 4.5 V$		3.6		nC
Q _{gd}	Gate-Drain Charge			3.6		nC
Drain-So	ource Diode Characteristics	and Maximum Ratings	•	•	•	
ls	Maximum Continuous Drain-Source				2.1	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 2.1 A$ (Note 2)		0.7	1.2	V

 $R_{\theta JA}$ is the sum of the junction-to-case and case-to-animon treman concerns more than the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

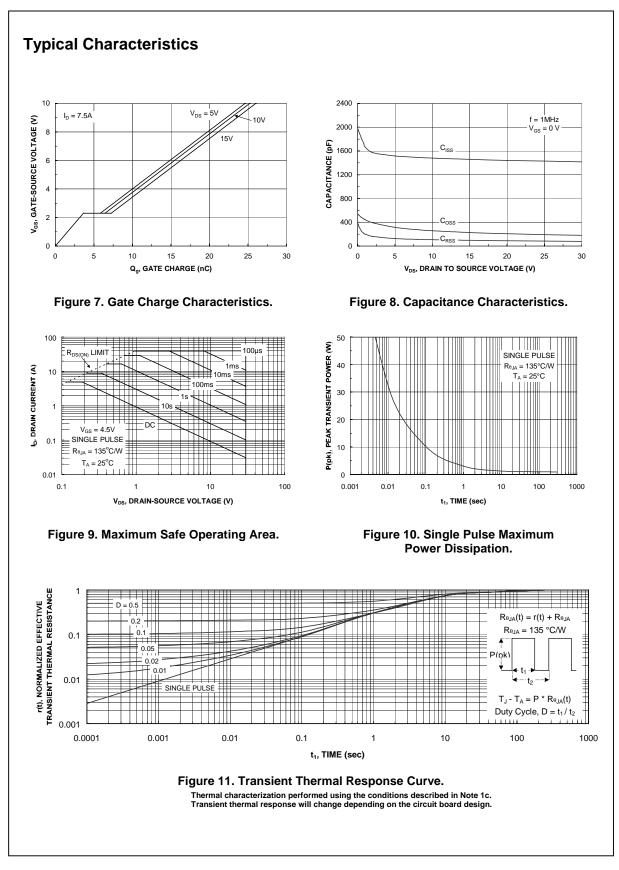
Q Q Q Q Q

<u>...</u>

a) 50°/W when mounted on a 1in² pad of 2 oz copper


b) 105°/W when mounted on a .04 in² pad of 2 oz copper

2000


c) 125°/W when mounted on a minimum pad.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

FDS6678A

FDS6678A

FDS6678A Rev C(W)

TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. FAST[®] ACEx™ PACMAN™ SuperSOT[™]-3 FASTr™ POP™ SuperSOT[™]-6 Bottomless™ GlobalOptoisolator™ CoolFET™ PowerTrench ® SuperSOT[™]-8 CROSSVOLT™ GTO™ QFET™ SyncFET™ TinyLogic™ DenseTrench™ HiSeC™ QS™ UHC™ DOME™ ISOPLANAR™ QT Optoelectronics[™] EcoSPARK™ LittleFET™ Quiet Series[™] UltraFET[®] SILENT SWITCHER ® VCX™ E²CMOS[™] MicroFET™ EnSigna™ SMART START™ MICROWIRE™ FACT™ OPTOLOGIC™ Star* Power™ **OPTOPLANAR™** Stealth™ FACT Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	•	• Rev. H1