

- ,				
V _{DSS}	Drain to Source Voltage		40	V
V _{GS}	Gate to Source Voltage		±20	V
1	Drain Current - Continuous (V _{GS} =10) (Note 1)	$T_C = 25^{\circ}C$	110	Α
ID	Pulsed Drain Current	T _C = 25°C	See Figure4	A
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	172	mJ
D	Power Dissipation		176	W
P _D	Derate above 25°C		1.18	W/ºC
T _J , T _{STG}	Operating and Storage Temperature		-55 to + 175	°C
$R_{\theta JC}$	Thermal Resistance Junction to Case		0.85	°C/W
$R_{\theta JA}$	Maximum Thermal Resistance Junction to Ambient	(Note 3)	43	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB9406	FDB9406_F085	TO-263AB	330mm	24mm	800 units

Notes:

1: Current is limited by bondwire configuration. 2: Starting $T_J = 25^{\circ}$ C, L = 0.04mH, I_{AS} = 88A, V_{DD} = 40V during inductor charging and V_{DD} = 0V during time in avalanche 3: R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.

$\begin{array}{c c c c c c c c c } \hline P_{DSS} & Drain to Source Leakage Current & V_{DS}=40V, & T_J=25^{\circ}C & - & - & 1 & \mu^A \\ \hline V_{GS}=0V & T_J=175^{\circ}C(Note 4) & - & - & 1 & m^A \\ \hline V_{GS} & Gate to Source Leakage Current & V_{GS}=\pm 20V & - & - & \pm 100 & n^A \\ \hline Dn Characteristics & & & & & & & & & & & & & \\ \hline Dn Characteristics & & & & & & & & & & & & & & & & & & &$	Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
$\begin{array}{c c c c c c c } \hline V_{DS} & Drain to Source Leakage Current & V_{DS} = 40V, & T_J = 25^\circ C & - & - & 1 & \mu^A \\ \hline V_{GS} & = 0V & T_J = 175^\circ C(Note 4) & - & - & 1 & m^A \\ \hline V_{GS} & = 0V & V_{GS} = \pm 20V & - & - & \pm 100 & n^A \\ \hline On Characteristics & & & & & & \\ \hline On Characteristics & & & & & & & \\ \hline V_{GS(th)} & Gate to Source Threshold Voltage & V_{GS} = V_{DS}, I_D = 250\mu A & 2.0 & 2.83 & 4.0 & V \\ \hline v_{DS(on)} & Drain to Source On Resistance & & & & & & \\ \hline D_{D} = 80A, & & & & & & & \\ \hline I_D = 80A, & & & & & & & & & \\ \hline V_{GS} = 10V & & & & & & & & & & & \\ \hline T_J = 175^\circ C(Note 4) & - & & & & & & & \\ \hline Dynamic Characteristics & & & & & & & \\ \hline C_{iss} & Input Capacitance & & & & & & \\ \hline C_{rss} & Reverse Transfer Capacitance & & & & & \\ \hline R_g & Gate Resistance & & & & & & & & & & \\ \hline R_g & Gate Charge at 10V & & & & & & & & & \\ \hline Q_{GTOT} & Total Gate Charge at 10V & & & & & & & & & & \\ \hline V_{OS} = 0 to 10V & & & & & & & & & & & \\ \hline \hline V_{DD} = 32V & - & & & & & & & & \\ \hline \end{array}$	Off Cha	racteristics					
IDSSDrain to Source Leakage Current $V_{GS} = 0V$ $T_J = 175^{\circ}C(Note 4)$ 1m/AIGSSGate to Source Leakage Current $V_{GS} = \pm 20V$ ± 100 n/AOn Characteristics $V_{GS}(th)$ Gate to Source Threshold Voltage $V_{GS} = V_{DS}$, $I_D = 250\mu A$ 2.02.834.0V $V_{GS}(th)$ Drain to Source On Resistance $I_D = 80A$, $V_{GS} = 10V$ $T_J = 25^{\circ}C$ -1.311.8m/ADynamic Characteristics C_{iss} Input Capacitance C_{rss} $V_{DS} = 25V$, $V_{GS} = 0V$, $f = 1MHz$ -7710-pF C_{rss} Reverse Transfer Capacitance C_{Rg} $Gate Resistance$ $f = 1MHz$ -2.015-pF R_g Gate Resistance $f = 1MHz$ -2.1- Ω Ω $Q_{q(TOT)}$ Total Gate Charge at 10V $V_{GS} = 0$ to 10V $V_{DD} = 32V$ -107138nC	B _{VDSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	40	-	-	V
SocialV_{GS} = 0VT_J = 175°C(Note 4)1m/dI_{GSS}Gate to Source Leakage Current $V_{GS} = \pm 20V$ ± 100 n/dOn Characteristics $V_{GS}(th)$ Gate to Source Threshold Voltage $V_{GS} = V_{DS}$, $I_D = 250 \mu A$ 2.02.834.0V $r_{DS}(on)$ Drain to Source On Resistance $I_D = 80A$, $V_{GS} = 10V$ $T_J = 25°C$ -1.311.8m/dDynamic Characteristics C_{iss} Input Capacitance $V_{DS} = 25V$, $V_{GS} = 0V$, $f = 1MHz$ -2015-pF C_{rss} Reverse Transfer Capacitance $f = 1MHz$ -2.1- Ω R_g Gate Resistance $f = 1MHz$ -2.1- Ω $Q_q(ToT)$ Total Gate Charge at 10V $V_{GS} = 0$ to 10V $V_{DD} = 32V$ -107138nC	1	Drain to Source Lookage Current	V_{DS} =40V, T_{J} =25°C	-	-	1	μA
On Characteristics $V_{GS(th)}$ Gate to Source Threshold Voltage $V_{GS} = V_{DS}$, $I_D = 250 \mu A$ 2.02.834.0V $r_{DS(on)}$ Drain to Source On Resistance $I_D = 80A$, $V_{GS} = 10V$ $T_J = 25^{\circ}C$ -1.311.8msDynamic Characteristics C_{iss} Input Capacitance $V_{DS} = 25V$, $V_{GS} = 0V$, $f = 1MHz$ -2710-pF C_{rss} Reverse Transfer Capacitance $V_{DS} = 25V$, $V_{GS} = 0V$, $f = 1MHz$ -2015-pF R_g Gate Resistance $f = 1MHz$ -2.1- Ω $Q_{g(ToT)}$ Total Gate Charge at 10V $V_{GS} = 0$ to 10V $V_{DD} = 32V$ -107138nC	DSS	Drain to Source Leakage Current	$V_{GS} = 0V$ $T_J = 175^{\circ}C(Note 4)$	-	-	1	mA
On Characteristics $V_{GS(th)}$ Gate to Source Threshold Voltage $V_{GS} = V_{DS}$, $I_D = 250 \mu A$ 2.02.834.0V $r_{DS(on)}$ Drain to Source On Resistance $I_D = 80A$, $V_{GS} = 10V$ $T_J = 25^{\circ}C$ -1.311.8mgDynamic Characteristics C_{iss} Input Capacitance $V_{DS} = 25V$, $V_{GS} = 0V$, $f = 1MHz$ -2710-pF C_{rss} Reverse Transfer Capacitance $V_{DS} = 25V$, $V_{GS} = 0V$, $f = 1MHz$ -2015-pF R_g Gate Resistance $f = 1MHz$ -2.1- Ω $Q_{q(ToT)}$ Total Gate Charge at 10V $V_{GS} = 0$ to 10V $V_{DD} = 32V$ -107138nC	I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$	-	-	±100	nA
VGS-10VTJ = 175 C(NOLE 4)-2.202.8InstructionDynamic Characteristics C_{iss} Input Capacitance $V_{DS} = 25V, V_{GS} = 0V,$ -7710-pF C_{rss} Reverse Transfer Capacitance $f = 1MHz$ -2015-pF R_g Gate Resistance $f = 1MHz$ -2.1- Ω $Q_{g(ToT)}$ Total Gate Charge at 10V $V_{GS} = 0$ to 10V $V_{DD} = 32V$ -107138nC	r _{DS(on)}	Drain to Source On Resistance			-	-	mΩ
VGS-10VTJ = 175 C(NOLE 4)-2.202.8InstructionDynamic Characteristics C_{iss} Input Capacitance $V_{DS} = 25V, V_{GS} = 0V,$ -7710-pF C_{rss} Reverse Transfer Capacitance $f = 1MHz$ -2015-pF R_g Gate Resistance $f = 1MHz$ -2.1- Ω $Q_{g(ToT)}$ Total Gate Charge at 10V $V_{GS} = 0$ to 10V $V_{DD} = 32V$ -107138nC		Drain to Source On Resistance			-	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. ,		$V_{GS} = 10V$ $I_{J} = 175^{\circ}C(NOLE 4)$	-	2.20	2.0	11152
$ \begin{array}{c c} C_{oss} & Output Capacitance \\ C_{rss} & Reverse Transfer Capacitance \\ R_g & Gate Resistance \\ Q_{g(ToT)} & Total Gate Charge at 10V \\ \end{array} $	•	Τ			7710	_	nF
C_{rss} Reverse Transfer Capacitance11102-pF R_g Gate Resistancef = 1MHz-2.1- Ω $Q_{g(ToT)}$ Total Gate Charge at 10V $V_{GS} = 0$ to 10V $V_{DD} = 32V$ -107138nC			20 00	-	-	-	
R _g Gate Resistance f = 1MHz - 2.1 - Ω $Q_{g(ToT)}$ Total Gate Charge at 10V $V_{GS} = 0$ to 10V $V_{DD} = 32V$ - 107 138 nC			f = 1MHz	-		-	pF
$V_{g(ToT)}$ Total Gate Charge at 10V $V_{GS} = 0$ to 10V $V_{DD} = 32V$ - 107 138 nC		Gate Resistance	f = 1MHz	-	2.1	-	Ω
	<u> </u>	Total Gate Charge at 10V	$V_{GS} = 0$ to 10V $V_{DD} = 32V$	-	107	138	nC
	Q_(11=)		• <u></u> •	-	14	19	nC

FDB9406_F085 N-Channel Power Trench[®] MOSFET

Switching Characteristics

Gate to Source Gate Charge

Gate to Drain "Miller" Charge

t _{on}	Turn-On Time		-	-	107	ns
t _{d(on)}	Turn-On Delay Time		-	28	-	ns
t _r	Rise Time	V _{DD} = 20V, I _D = 80A,	-	48	-	ns
t _{d(off)}	Turn-Off Delay Time	V_{DD} = 20V, I _D = 80A, V _{GS} = 10V, R _{GEN} = 6Ω	-	50	-	ns
t _f	Fall Time		-	20	-	ns
t _{off}	Turn-Off Time		-	-	100	ns

-

-

33

18

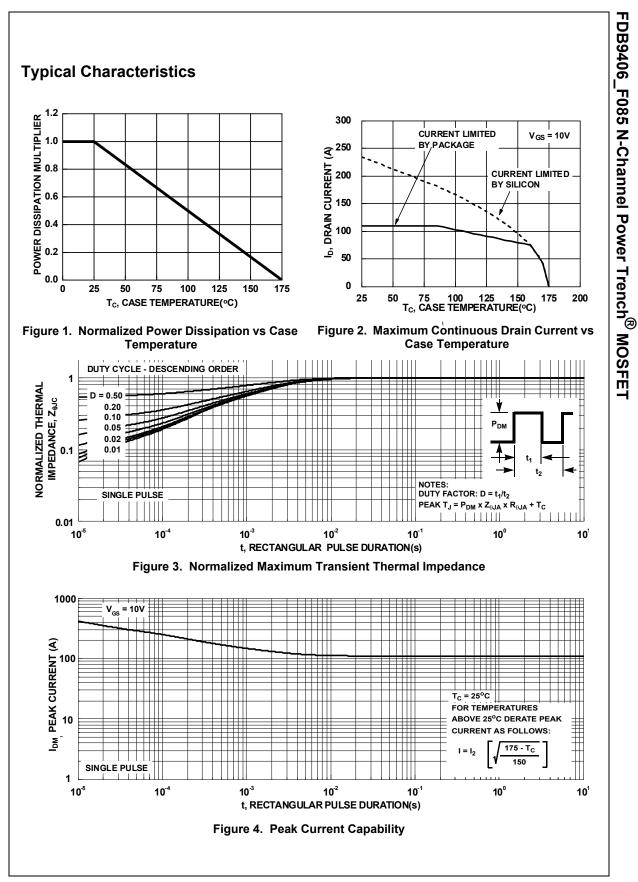
-

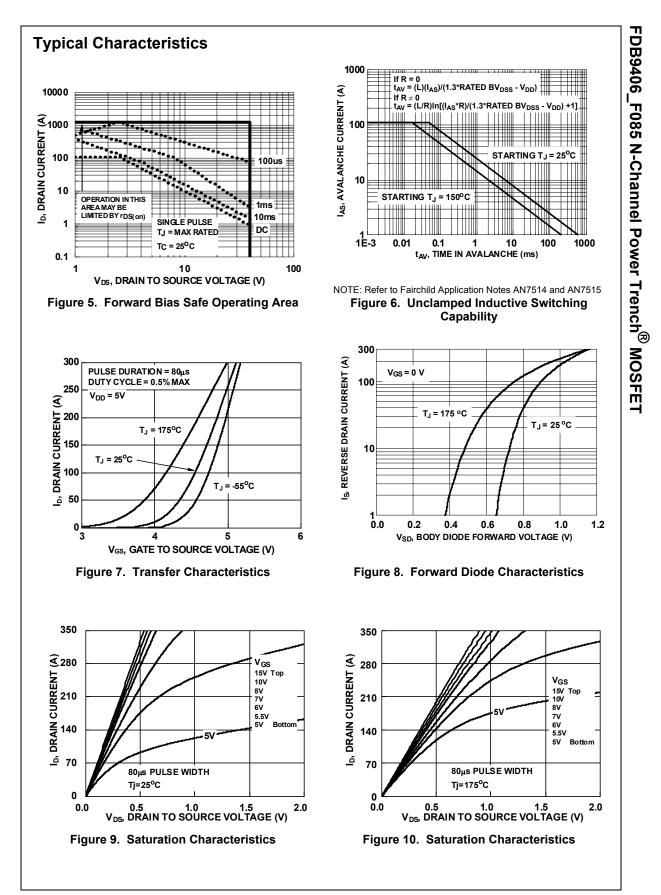
-

nC

nC

Drain-Source Diode Characteristics


V_{SD}	Source to Drain Diode Voltage	I _{SD} = 80A, V _{GS} = 0V	-	-	1.25	V
T _{rr}	Reverse Recovery Time	I _F = 80A, dI _{SD} /dt = 100A/μs,	-	81	92	ns
Q _{rr}	Reverse Recovery Charge	V _{DD} =32V	-	109	140	nC


Notes:


 Q_gs

Q_{gd}

4: The maximum value is specified by design at TJ = 175° C. Product is not tested to this condition in production.

FDB9406_F085 Rev. C1

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

intended to be an exhaustive list o	r all such trademarks.		
2Cool™	F-PFS [™]	PowerTrench [®]	The Power Franchis
AccuPower™	FRFET [®]	PowerXS™	the ®
AX-CAP™*	Global Power Resource SM	Programmable Active Droop [™]	puwer
BitSiC [®]	Green Bridge™	QFET®	franchise TinyBoost™
Build it Now™	Green FPS [™]	QS™	
CorePLUS™	Green FPS™ e-Series™	Quiet Series [™]	TinyBuck™ TinyCalc™
CorePOWER™	G <i>max</i> ™	RapidConfigure™	TinyLogic [®]
CROSSVOLT™	GTO™	TM T	TINYOPTO™
CTL™	IntelliMAX™		TinyPower™
Current Transfer Logic™	ISOPLANAR™	Saving our world, 1mW/W/kW at a time™	TinyPWM™
DEUXPEED®	Marking Small Speakers Sound Loude	er SignalWise™	TinyWire™
Dual Cool™_	and Better™	SmartMax™	TranSiC [®]
EcoSPARK [®]	MegaBuck™	SMART START™	TriFault Detect™
EfficentMax™	MICROCOUPLER™	Solutions for Your Success™	TRUECURRENT®*
ESBC™	MicroFET™	SPM®	µSerDes™
F R	MicroPak™	STEALTH™	"idendes
F	MicroPak2 [™]	SuperFET [®]	SerDes
Fairchild [®]	MillerDrive™	SuperSOT™-3	
Fairchild Semiconductor®	MotionMax™	SuperSOT™-6	UHC®
FACT Quiet Series™	Motion-SPM [™]	SuperSOT™-8	Ultra FRFET™
FACT®	mWSaver™	SupreMOS®	UniFET™
FAST [®]	OptoHiT™	SyncFET™	VCX™
FastvCore™	OPTOLOGIC®	Sync-Lock™	VisualMax [™]
FETBench™	OPTOPLANAR®	SYSTEM ®*	VoltagePlus™
FlashWriter [®] *	(U _R	GENERAL	XS™
FPS™	U		

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- 1 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2 A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

ise®