

DTA6-N

6A Bidirectional Thyristor

Features

• Peak OFF-state voltage: 200 to 600V

• RMS ON-state current: 6A

• TO-220 package.

Absolute Maximum Ratings at Ta=25°C			DTA6C-N	DTA6E-N	DT6AG-N	unit
Repetitive Peak	V_{DRM}		200	400	600	V
OFF-StateVoltage						
RMS ON-State Current	$I_{T(RMS)}$	Tc=104°C, single-phase full-wave	\rightarrow	\rightarrow	6	A
Surge ON-State Current	I_{TSM}	Peak 1 cycle, 50Hz	\rightarrow	\rightarrow	60	A
Amperes Squared-Seconds	∫ i²T·dt	1ms≤t≤10ms	\rightarrow	\rightarrow	18	A^2s
Peak Gate Power Dissipation	P_{GM}	f≥50Hz, duty≤10%	\rightarrow	\rightarrow	5	W
Average Gate Power Dissipation	n $P_{G(AV)}$		\rightarrow	\rightarrow	0.5	W
Peak Gate Current	I_{GM}	f≥50Hz, duty≤10%	\rightarrow	\rightarrow	±2	A
Peak Gate Voltage	V_{GM}	f≥50Hz, duty≤10%	\rightarrow	\rightarrow	±10	V
Junction Temperature	Tj		\rightarrow	\rightarrow	125	°C
Strage Temperature	Tstg			\rightarrow	-40 to $+125$	°C
Weght			\rightarrow	\rightarrow	1.8	g
Electrical Characteristics at Ta=25°C			min typ	max	unit	
Repetitive Peak	I_{DRM}	Tj=125°C, V _D =V _{DRM}			2	mA
OFF-State Current						
Peak ON-State Voltage	V_{TM}	$I_{TM}=9A$			1.5	V
Critical Rate of Rise of	dv/dt	$Tj=125^{\circ}C, V_D=200V$ (C	C),	10		$V/\mu s$
OFF-State Voltage		400V (E to G)				
Holding Current	$I_{\mathbf{H}}$	$R_L=100\Omega$			50	mA
Gate Trigger Current (I)	I_{GT}	$V_{D}=12V, R_{L}=20\Omega$			30	mA
(II)	I_{GT}	$V_D=12V$, $R_L=20\Omega$			30	mA

 $V_D=12V, R_L=20\Omega$

 $V_D=12V, R_L=20\Omega$

 $V_D=12V, R_L=20\Omega$

 $V_D=12V, R_L=20\Omega$

 $V_D=12V$, $R_L=20\Omega$

 $V_D=12V$, $R_L=20\Omega$

Tc=125°C, V_D=Rated voltage

Between junction and case, AC

*: The gate trigger mode is shown below.

Gate Trigger Voltage

Gate Nontrigger Voltage

Thermal Resistance

Trigger mode	T2	T1	G
I	+	_	+
II	+	_	-
Ш	_	+	+
IV	_	+	_

(III)

(IV)

(I)

(II)

(III)

(IV)

 I_{GT}

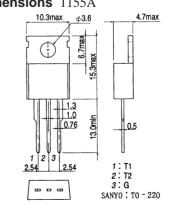
 I_{GT}

 V_{GT}

 V_{GT}

 V_{GT}

 V_{GT}


 V_{GD}

Rth(j-c)

(unit: mm)

0.2

50

2

2

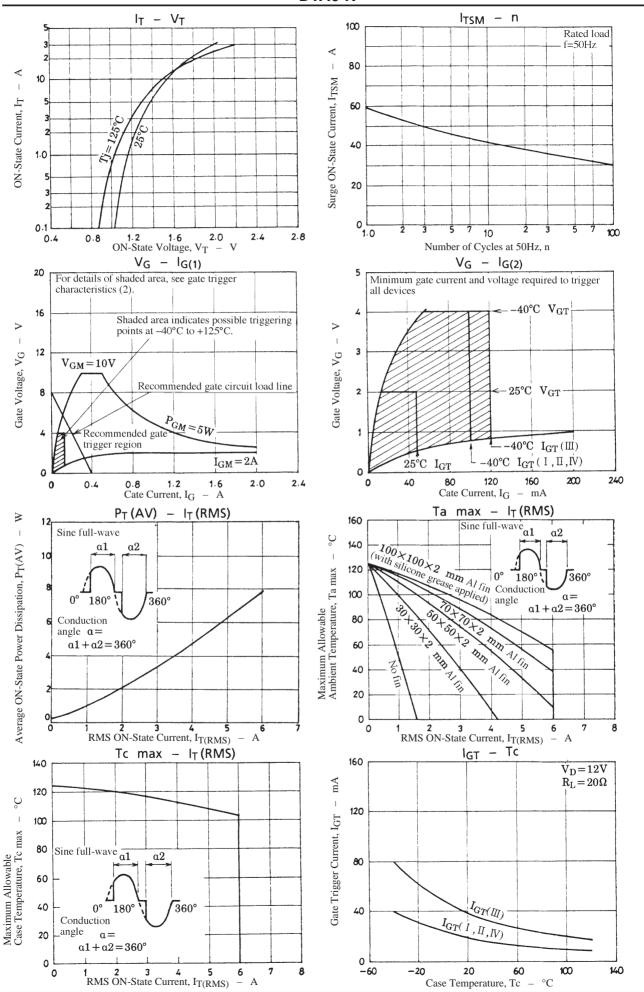
2

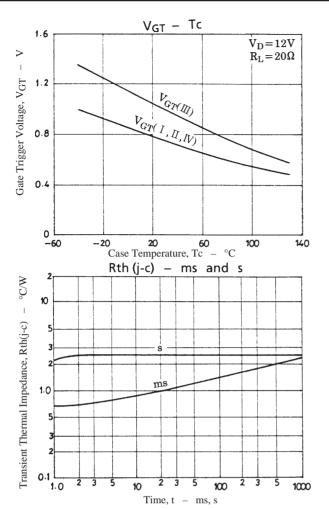
2

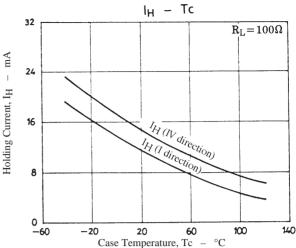
mA

mΑ

V


V


V


V

V

°C/W

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property lose.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibilty for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of October, 1997. Specifications and information herein are subject to change without notice.