

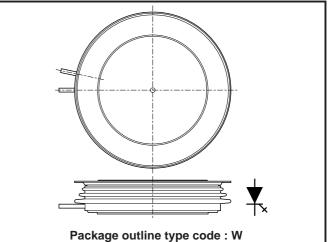
Replaces July 1999 version, DS4334-4.0

DG858DW45

Gate Turn-Off Thyristor

DS4334-4.1 M	ay 2000
--------------	---------

FEATURES


- Double Side Cooling
- High Reliability In Service
- High Voltage Capability
- Fault Protection Without Fuses
- High Surge Current Capability
- Turn-off Capability Allows Reduction In Equipment Size And Weight. Low Noise Emission Reduces Acoustic Cladding Necessary For Environmental Requirements

APPLICATIONS

- Variable speed A.C. motor drive inverters (VSD-AC).
- Uninterruptable Power Supplies
- High Voltage Converters.
- Choppers.
- Welding.
- Induction Heating.
- DC/DC Converters.

VOLTAGE RATINGS

KEY PAR	AMETERS
I _{TCM}	3000A
V	4500V
	1100A
I _{⊤(AV)} dV _□ /dt	750V/ μs
dl _T /dt	300Α/μs

Package outline type code : W See Package Details for further information.

Fig.1 Package outline

Type Number	Repetitive Peak Off-state Voltage V _{DRM} V	Repetitive Peak Reverse Voltage V _{RRM} V	Conditions
DG858DW45	4500	16	$T_{vj} = 125^{\circ}C, I_{DRM} = 100mA,$ $I_{RRM} = 50mA$

CURRENT RATINGS

Symbol	Parameter	Conditions	Max.	Units
I _{TCM}	Repetitive peak controllable on-state current	$ \begin{array}{l} V_{_{D}}=V_{_{DRM}},T_{_{j}}=125^{\circ}C,di_{_{GQ}}/dt=40A/\mus,\\ Cs=4.0\muF,L_{_{S}}\leq200nH \end{array} $	3000	A
I _{T(AV)}	Mean on-state current	$T_{HS} = 80^{\circ}C$. Double side cooled, half sine 50Hz.	1100	А
I _{T(RMS)}	RMS on-state current	$T_{HS} = 80^{\circ}C$. Double side cooled, half sine 50Hz.	1720	А

SURGE RATINGS

Symbol	Parameter	Conditions	Max.	Units
I _{TSM}	Surge (non-repetitive) on-state current	10ms half sine. T _j = 125°C	20.0	kA
l²t	I ² t for fusing	10ms half sine. T _j =125°C	2.0 x 10 ⁶	A ² s
di _r /dt	Critical rate of rise of on-state current	V _D = 3000V, I _T = 3000A, T _j =125°C I _{FG} > 40A, Rise time < 1.0μs	300	A/μs
D. (.).		To 66% V_{DRM} ; $R_{GK} \le 22\Omega$, $T_j = 125^{\circ}C$	20	V/µs
dV _D /dt	Rate of rise of off-state voltage	To 66% V _{DRM} ; V _{RG} = -2V, T _j = 125°C	750	V/µs
L _s	Peak stray inductance in snubber circuit	$I_{T} = 3000A, V_{D} = V_{DRM}, T_{j} = 125^{\circ}C,$ $di_{GQ}/dt = 40A/\mu s, Cs = 4.0\mu F$	200	nH

GATE RATINGS

Symbol	Parameter	Conditions	Min.	Max.	Units
V _{RGM}	Peak reverse gate voltage	This value maybe exceeded during turn-off	-	16	V
I _{FGM}	Peak forward gate current		20	100	А
P _{FG(AV)}	Average forward gate power		-	20	W
P _{RGM}	Peak reverse gate power		-	24	kW
di _{gq} /dt	Rate of rise of reverse gate current		20	60	A/μs
t _{on(min)}	Minimum permissable on time		50	-	μs
t _{OFF(min)}	Minimum permissable off time		100	-	μs

THERMAL AND MECHANICAL DATA

Symbol	Parameter	Conditions		Min.	Max.	Units
		Double side cooled		-	0.011	°C/W
R _{th(j-hs)}	DC thermal resistance - junction to	Anode side cooled		-	0.017	°C/W
	heatsink surface	Cathode side cooled		-	0.03	°C/W
R _{th(c-hs)}	Contact thermal resistance	Clamping force 40kN With mounting compound	per contact	-	0.0021	°C/W
T _{vj}	Virtual junction temperature			-40	125	°C
T _{OP} /T _{stg}	Operating junction/storage temperature range			-40	125	°C
-	Clamping force			36.0	44.0	kN

CHARACTERISTICS

Symbol	Parameter	Conditions	Min.	Max.	Units
V _{TM}	On-state voltage	At 3000A peak, I _{G(ON)} = 10A d.c.	-	3.85	V
I _{DM}	Peak off-state current	V _{DRM} = 4500V, V _{RG} = 2V	-	100	mA
I _{RRM}	Peak reverse current	At V _{RRM}	-	50	mA
V _{gt}	Gate trigger voltage	$V_{\rm D} = 24V, I_{\rm T} = 100A, T_{\rm j} = 25^{\circ}{\rm C}$	-	1.2	V
I _{GT}	Gate trigger current	$V_{\rm D} = 24V, I_{\rm T} = 100A, T_{\rm j} = 25^{\circ}{\rm C}$	-	4.0	A
I _{RGM}	Reverse gate cathode current	V _{RGM} = 16V, No gate/cathode resistor	-	50	mA
E _{ON}	Turn-on energy	V _D = 2000V	-	4400	mJ
t _d	Delay time	I _τ = 3000A, dI _τ /dt = 300A/μs	-	2.0	μs
t _r	Rise time	$I_{FG} = 40A$, rise time < 1.0µs	-	6.0	μs
E_{OFF}	Turn-off energy		-	12500	mJ
t _{gs}	Storage time		-	26	μs
t _{gf}	Fall time	I _T = 3000A, V _{DM} = 4200V	-	2.5	μs
t _{gq}	Gate controlled turn-off time	Snubber Cap Cs = 4.0μF,	-	28.5	μs
Q _{GQ}	Turn-off gate charge	$di_{GQ}/dt = 40/\mu s$	-	12500	μC
$Q_{_{\mathrm{GQT}}}$	Total turn-off gate charge		-	25000	μC
I _{GQM}	Peak reverse gate current		-	950	Α

RELIABILITY

	Conditions	Limit	Units
DC blocking reliability	V_{dc} = 3500V, T_j = -40 to + 125°C, ambient cosmic radiation at sea level, in open air, 100% duty cycle.	100	FIT

CURVES

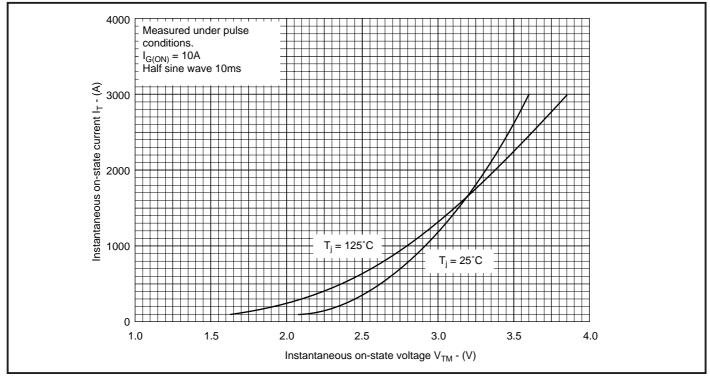


Figure 2. On-state characteristics

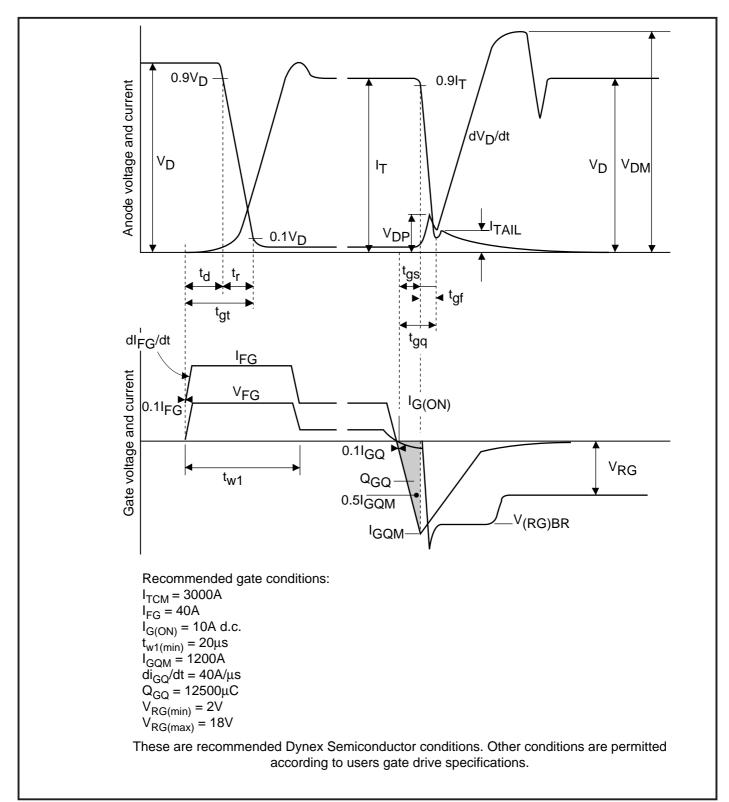
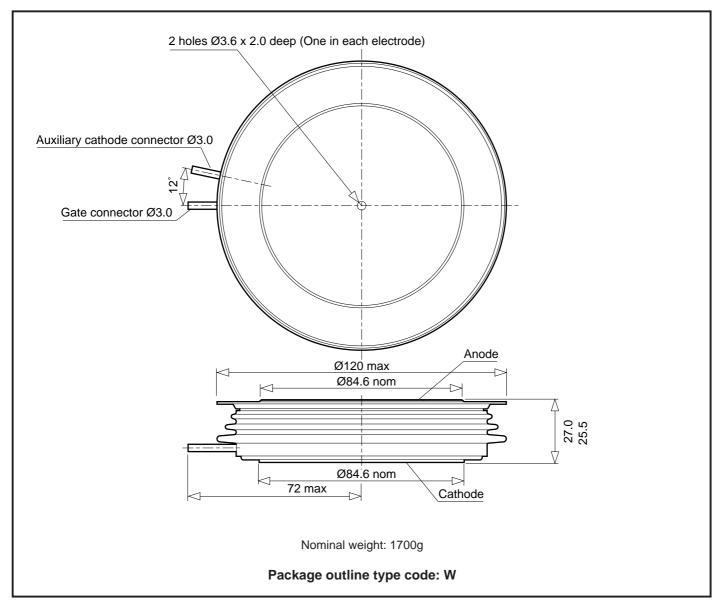



Figure 3. General switching waveforms

PACKAGE DETAILS

For further package information, please contact your local Customer Service Centre. All dimensions in mm, unless stated otherwise. DO NOT SCALE.

Associated Literature/Products Publication No. Title/Part Number

AN4571	Application note - GDU9X-XXXXX Series GTO gate drive units.
DS4567	GDU90-20721 GTO gate drive unit.
DS4568	GDU90-20722 GTO gate drive unit.
DS4150	DSF8045SK - Snubber diode.
DS4153	DSF21545SV - Antiparallel/freewheel diode.

6/7

HEADQUARTERS OPERATIONS **DYNEX SEMICONDUCTOR LTD** Doddington Road, Lincoln. Lincolnshire. LN6 3LF. United Kingdom. Tel: 00-44-(0)1522-500500 Fax: 00-44-(0)1522-500550

DYNEX POWER INC.

Unit 7 - 58 Antares Drive, Nepean, Ontario, Canada K2E 7W6. Tel: 613.723.7035 Fax: 613.723.1518 Toll Free: 1.888.33.DYNEX (39639)

http://www.dynexsemi.com

e-mail: power_solutions@dynexsemi.com

CUSTOMER SERVICE CENTRES Central Europe Tel: +33 (0)1 69 18 90 00. Fax: +33 (0)1 64 46 54 50. North America Tel: 011-800-5554-5554. Fax: 011-800-5444-5444. UK, Scandinavia & Rest Of World Tel: +44 (0)1522 500500. Fax: +44 (0)1522 500020.

SALES OFFICES

Central Europe Tel: +33 (0)1 69 18 90 00. Fax: +33 (0)1 64 46 54 50. North America Tel: (613) 723-7035. Fax: (613) 723-1518. Toll Free: 1.888.33.DYNEX (39639) / Tel: (831) 440-1988. Fax: (831) 440-1989 / Tel: (949) 733-3005. Fax: (949) 733-2986. UK, Scandinavia & Rest Of World Tel: +44 (0)1522 500500. Fax: +44 (0)1522 500020. These offices are supported by Representatives and Distributors in many countries world-wide. © Dynex Semiconductor 2000 Publication No. DS4334-1 Issue No.4.1 May 2000 TECHNICAL DOCUMENTATION – NOT FOR RESALE. PRINTED IN UNITED KINGDOM

Datasheet Annotations:

Dynex Semiconductor annotate datasheets in the top right hard corner of the front page, to indicate product status. The annotations are as follows:-

Target Information: This is the most tentative form of information and represents a very preliminary specification. No actual design work on the product has been started.

Preliminary Information: The product is in design and development. The datasheet represents the product as it is understood but details may change.

Advance Information: The product design is complete and final characterisation for volume production is well in hand.

No Annotation: The product parameters are fixed and the product is available to datasheet specification.

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.

All brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.