

MOS INTEGRATED CIRCUIT $\mu PD43257B$

256K-BIT CMOS STATIC RAM 32K-WORD BY 8-BIT

Description

The μ PD43257B is a high speed, low power, and 262,144 bits (32,768 words by 8 bits) CMOS static RAM. Battery backup is available. And the μ PD43257B has two chip enable pins (/CE1, CE2) to extend the capacity. The μ PD43257B is packed in 28-pin plastic DIP and 28-pin plastic SOP.

Features

32,768 words by 8 bits organization
Fast access time: 70, 85 ns (MAX.)
Low Vcc data retention: 2.0 V (MIN.)
Two Chip Enable inputs: /CE1, CE2

Part number	Access time	Operating supply	Operating ambient	Supply current		
	ns (MAX.)	voltage	temperature	At operating	At standby	At data retention
		V	°C	mA (MAX.)	μ Α (MAX.)	μΑ (MAX.) Note
μPD43257B-xxL	70, 85	4.5 to 5.5	0 to 70	45	50	3
μPD43257B-xxLL				45	15	2

Note Ta \leq 40 °C, Vcc = 3.0 V

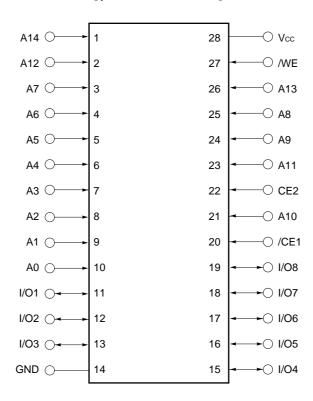
Version X

This Data sheet can be applied to the version X. This version is identified with its lot number. Letter X in the fifth character position in a lot number signifies version X.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

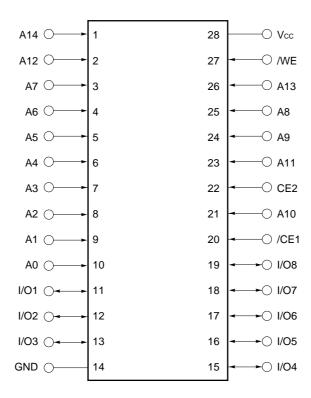
Ordering Information


Part number	Package	Access time	Supply current μA (MAX.)		Remark
		ns (MAX.)	At standby	At data retention Note	
μPD43257BCZ-70L	28-PIN PLASTIC DIP	70	50	3	L version
μPD43257BCZ-85L	(15.24 mm (600))	85			
μPD43257BCZ-70LL		70	15	2	LL version
μPD43257BCZ-85LL		85			
μPD43257BGU-70L	28-PIN PLASTIC SOP	70	50	3	L version
μPD43257BGU-85L	(11.43 mm (450))	85			
μPD43257BGU-70LL		70	15	2	LL version
μPD43257BGU-85LL		85			

Note T_A \leq 40 °C, Vcc = 3.0 V

Pin Configurations (Marking Side)

/xxx indicates active low signal.


A0 - A14 : Address inputs

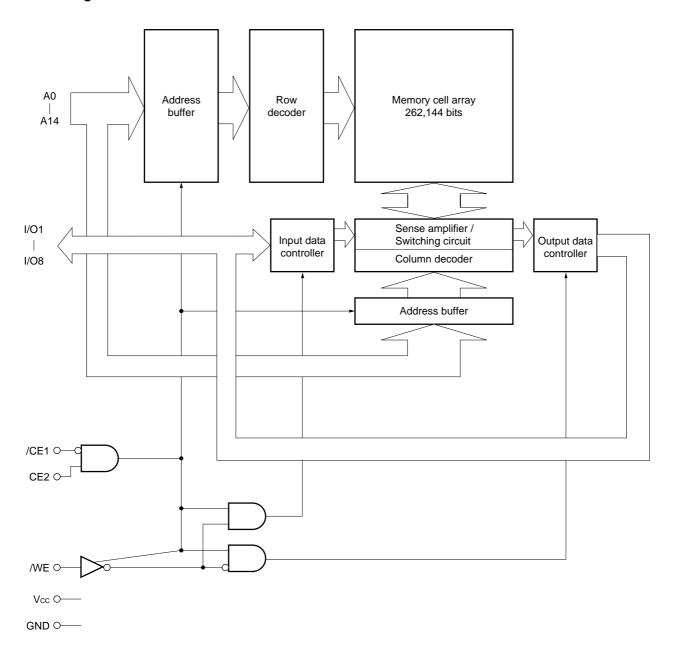
I/O1 - I/O8 : Data inputs / outputs

/CE1 : Chip Enable 1
CE2 : Chip Enable 2
/WE : Write Enable
Vcc : Power supply
GND : Ground

Remark Refer to Package Drawings for the 1-pin marking.

28-PIN PLASTIC SOP (11.43 mm (450)) $[\mu PD43257BGU-xxL]$ $[<math>\mu PD43257BGU-xxLL]$

A0 - A14 : Address inputs


I/O1 - I/O8 : Data inputs / outputs

/CE1 : Chip Enable 1
CE2 : Chip Enable 2
/WE : Write Enable
Vcc : Power supply
GND : Ground

Remark Refer to Package Drawings for the 1-pin marking.

Block Diagram

Truth Table

/CE1	CE2	/WE	Mode	I/O	Supply current
Н	×	×	Not selected	High impedance	Isв
×	L	×			
L	Н	Н	Read	D оит	ICCA
L	Н	L	Write	Din	

 $\textbf{Remark} \ \times \colon V_{IH} \ or \ V_{IL}$

Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	Vcc		-0.5 Note to +7.0	V
Input / Output voltage	VT		-0.5 Note to Vcc + 0.5	٧
Operating ambient temperature	TA		0 to 70	°C
Storage temperature	Tstg		-55 to +125	°C

Note -3.0 V (MIN.) (Pulse width: 50 ns)

Caution Exposing the device to stress above those listed in Absolute Maximum Rating could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc		4.5	5.0	5.5	٧
High level input voltage	VIH		2.2		Vcc+0.5	٧
Low level input voltage	VIL		-0.3 Note		+0.8	٧
Operating ambient temperature	TA		0		70	°C

Note -3.0 V (MIN.) (Pulse width: 50 ns)

Capacitance (T_A = 25 °C, f = 1 MHz)

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	Vin = 0 V			5	pF
Input / Output capacitance	C _{I/O}	V ₁ /0 = 0 V			8	pF

Remarks 1. VIN: Input voltage

Vi/o: Input / Output voltage

2. These parameters are periodically sampled and not 100% tested.

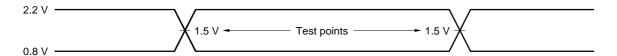
DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

Parameter	Symbol	Test condition	Test condition μ PD43257B-xxL		-xxL	μPD43257B-xxLL			Unit	
				MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input leakage	lu	Vin = 0 V to Vcc		-1.0		+1.0	-1.0		+1.0	μΑ
current										
I/O leakage	ILO	Vi/o = 0 V to Vcc, /CE1 = ViH or		-1.0		+1.0	-1.0		+1.0	μΑ
current		CE2 = VIL or /WE = VIL								
Operating	ICCA1	/CE1 = V _I L, CE2 = V _I H,	μPD43257B-70			45			45	mA
supply current		Minimum cycle time, I _{VO} = 0 mA	μPD43257B-85			45			45	
	ICCA2	/CE1 = V _I L, CE2 = V _I H, I _V O = 0 mA	/CE1 = VIL, CE2 = VIH, IVO = 0 mA			10			10	
	Іссаз	/CE1 ≤ 0.2 V, CE2 ≥ Vcc - 0.2 V, C	ycle = 1 MHz,			10			10	
		$I_{\text{I/O}} = 0 \text{ mA}, \text{ V}_{\text{IL}} \leq 0.2 \text{ V}, \text{ V}_{\text{IH}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V}$	0.2 V							
Standby	IsB	/CE1 = VIH or CE2 = VIL,				3			3	mA
supply current	SB1	/CE1 ≥ Vcc - 0.2 V, CE2 ≥ Vcc - 0.2	2 V		1.0	50		0.5	15	μΑ
	I _{SB2}	CE2 ≤ 0.2 V	CE2 ≤ 0.2 V		1.0	50		0.5	15	
High level	Vон1	lон = −1.0 mA		2.4			2.4			V
output voltage	V _{OH2}	$I_{OH} = -0.1 \text{ mA}$		Vcc-0.5			Vcc-0.5			
Low level	Vol	loL = 2.1 mA	lo _L = 2.1 mA			0.4			0.4	V
output voltage										

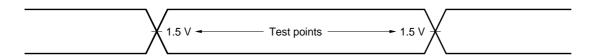
Remarks 1. VIN: Input voltage

Vi/o: Input / Output voltage

2. These DC characteristics are in common regardless of package types and access time.

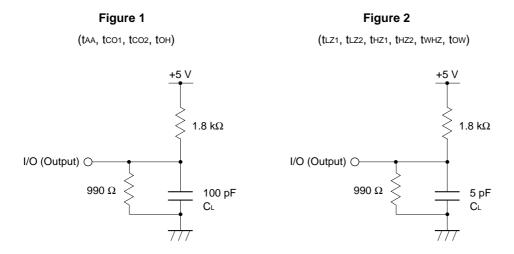


AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)


AC Test Conditions

[μ PD43257B-70L, μ PD43257B-85L, μ PD43257B-70LL, μ PD43257B-85LL]

Input Waveform (Rise and Fall Time ≤ 5 ns)



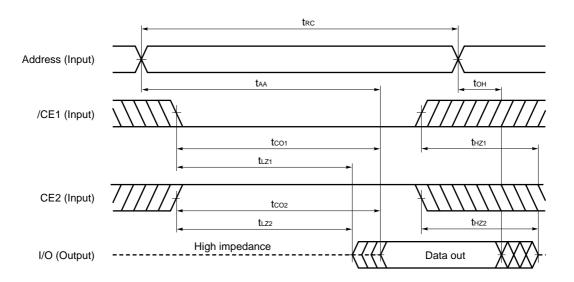
Output Waveform

Output Load

AC characteristics with notes should be measured with the output load shown in Figure 1 and Figure 2.

Remark CL includes capacitance of the probe and jig, and stray capacitance.

Read Cycle


Parameter	Symbol	μPD432	257B-70	μPD43257B-85		Unit	Condition
		MIN.	MAX.	MIN.	MAX.		
Read cycle time	trc	70		85		ns	
Address access time	t AA		70		85	ns	Note 1
/CE1 access time	t co1		70		85	ns	
CE2 access time	tco2		70		85	ns	
Output hold from address change	tон	10		10		ns	
/CE1 to output in low impedance	tLZ1	10		10		ns	Note 2
CE2 to output in low impedance	tLZ2	10		10		ns	
/CE1 to output in high impedance	t _{HZ1}		30		30	ns	
CE2 to output in high impedance	t HZ2		30		30	ns	

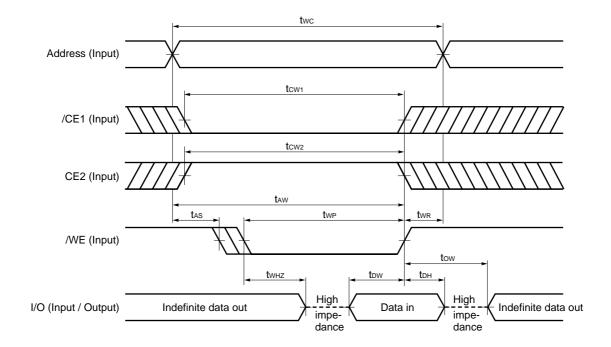
Notes 1. See the output load shown in Figure 1.

2. See the output load shown in Figure 2.

Remark These AC characteristics are in common regardless of package types and L, LL versions.

Read Cycle Timing Chart

Remark In read cycle, /WE should be fixed to high level.


Write Cycle

Parameter	Symbol	μPD432	257B-70	μPD43257B-85		Unit	Condition
		MIN.	MAX.	MIN.	MAX.		
Write cycle time	twc	70		85		ns	
/CE1 to end of write	tcw1	50		70		ns	
CE2 to end of write	tcw2	50		70		ns	
Address valid to end of write	taw	50		70		ns	
Address setup time	t AS	0		0		ns	
Write pulse width	twp	55		65		ns	
Write recovery time	twr	0		0		ns	
Data valid to end of write	tow	30		35		ns	
Data hold time	tон	0		0		ns	
/WE to output in high impedance	t wnz		30		30	ns	Note
Output active from end of write	tow	10		10		ns	

Note See the output load shown in Figure 2.

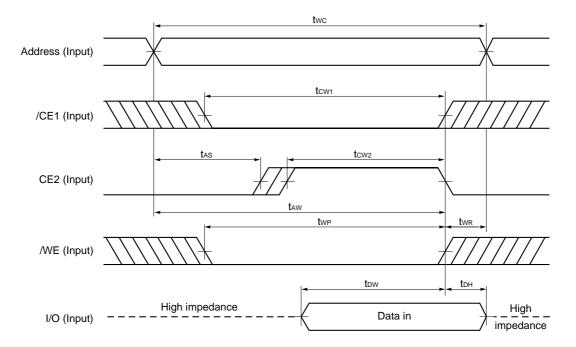
Remark These AC characteristics are in common regardless of package types and L, LL versions.


Write Cycle Timing Chart 1 (/WE Controlled)

- Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.
- When I/O pins are in the output state, therefore the input signals must not be applied to the output.
 - Remarks 1. Write operation is done during the overlap time of a low level /CE1, /WE and a high level CE2.
 - 2. If /CE1 changes to low level at the same time or after the change of /WE to low level, or if CE2 changes to high level at the same time or after the change of /WE to low level, the I/O pins will remain high impedance state.
 - 3. When /WE is at low level, the I/O pins are always high impedance. When /WE is at high level, read operation is executed. Therefore /OE should be at high level to make the I/O pins high impedance.

Data Sheet M10693EJ7V0DS00

Write Cycle Timing Chart 2 (/CE1 Controlled)



Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.

When I/O pins are in the output state, therefore the input signals must not be applied to the output.

Remark Write operation is done during the overlap time of a low level /CE1, /WE and a high level CE2.

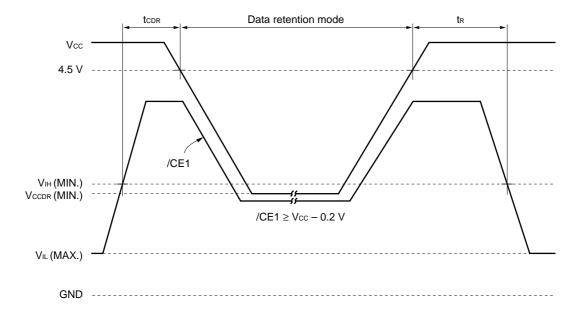
Write Cycle Timing Chart 3 (CE2 Controlled)

- Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.
 - 2. When I/O pins are in the output state, therefore the input signals must not be applied to the output.

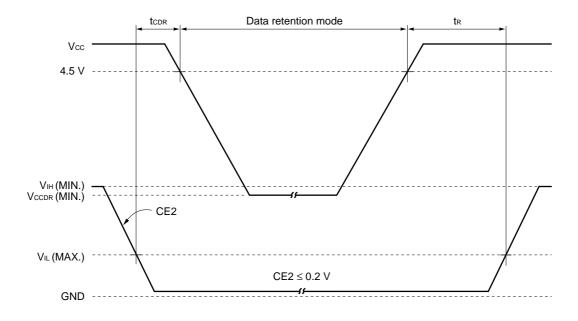
Remark Write operation is done during the overlap time of a low level /CE1, /WE and a high level CE2.

Low Vcc Data Retention Characteristics (T_A = 0 to 70 °C)

Parameter	Symbol	Test Condition	μΡΙ	043257B	-xxL	μPD	43257B-	xxLL	Unit
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Data retention supply voltage	VCCDR1	/CE1 ≥ Vcc - 0.2 V, CE2 ≥ Vcc - 0.2 V	2.0		5.5	2.0		5.5	V
	Vccdr2	CE2 ≤ 0.2 V	2.0		5.5	2.0		5.5	
Data retention supply current	ICCDR1	$Vcc = 3.0 \text{ V}, /CE1 \ge Vcc - 0.2 \text{ V},$ $CE2 \ge Vcc - 0.2 \text{ V}$		0.5	20 Note1		0.5	7 ^{Note2}	μΑ
	ICCDR2	Vcc = 3.0 V, CE2 ≤ 0.2 V		0.5	20 Note1		0.5	7 Note2	
Chip deselection to data retention mode	tcdr		0			0			ns
Operation recovery time	tr		5			5			ms

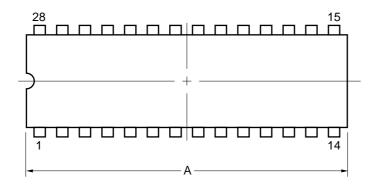

Notes 1. $3 \mu A (T_A \le 40 \, ^{\circ}C)$

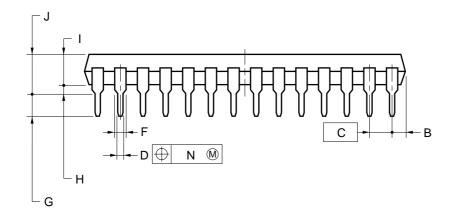
2. $2 \mu A (T_A \le 40 \, ^{\circ}C)$, $1 \mu A (T_A \le 25 \, ^{\circ}C)$

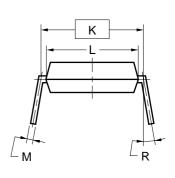

Data Retention Timing Chart

(1) /CE1 Controlled

Remark On the data retention mode by controlling /CE1, the input level of CE2 must be CE2 \geq Vcc - 0.2 V or CE2 \leq 0.2 V. The other pins (Address, I/O, /WE) can be in high impedance state.

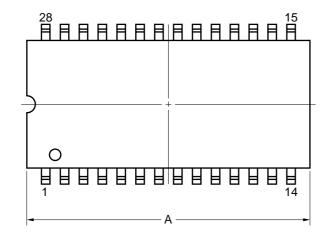

(2) CE2 Controlled




Remark On the data retention mode by controlling CE2, the other pins (/CE1, Address, I/O, /WE) can be in high impedance state.

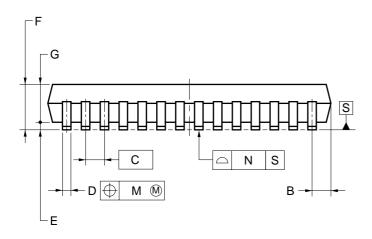
★ Package Drawings

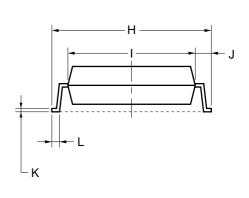
28-PIN PLASTIC DIP (15.24 mm (600))


NOTES

- 1. Each lead centerline is located within 0.25 mm of its true position (T.P.) at maximum material condition.
- 2. Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS
Α	38.10 MAX.
В	2.54 MAX.
С	2.54 (T.P.)
D	0.50±0.10
F	1.2 MIN.
G	3.6±0.3
Н	0.51 MIN.
I	4.31 MAX.
J	5.72 MAX.
K	15.24 (T.P.)
L	13.2
М	$0.25^{+0.10}_{-0.05}$
N	0.25
R	0~15°
	2000 400 000 44 0


P28C-100-600A1-2


28-PIN PLASTIC SOP (11.43 mm (450))

detail of lead end

NOTE

Each lead centerline is located within 0.12 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
А	18.0+0.6
В	1.27 MAX.
С	1.27 (T.P.)
D	$0.42^{+0.08}_{-0.07}$
Е	0.2±0.1
F	2.95 MAX.
G	2.55±0.1
Н	11.8±0.3
I	8.4±0.1
J	1.7±0.2
K	0.22±0.05
L	0.7±0.2
М	0.12
N	0.10
Р	3°+7°

P28GU-50-450A-4

Recommended Soldering Conditions

The following conditions must be met when soldering μ PD43257B. For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

Types of Surface Mount Device

μPD43257BGU-xxL : 28-PIN PLASTIC SOP (11.43 mm (450)) μPD43257BGU-xxLL : 28-PIN PLASTIC SOP (11.43 mm (450))

Please consult with our sales offices.

Types of Through Hole Mount Device

 μ PD43257BCZ-xxL : 28-PIN PLASTIC DIP (15.24 mm (600)) μ PD43257BCZ-xxLL : 28-PIN PLASTIC DIP (15.24 mm (600))

Soldering process	Soldering conditions
Wave soldering (only to leads)	Solder temperature : 260 °C or below,
	Flow time: 10 seconds or below
Partial heating method	Terminal temperature : 300 °C or below,
	Time : 3 seconds or below (Per one lead)

Caution Do not jet molten solder on the surface of package.

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is current as of June, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4