64／256／512／1K／2K／4K／8K x 9 Synchronous FIFOs

Features

■ High speed，low power，First－In First－Out（FIFO）memories － 64×9（CY7C4421）
口 256×9（CY7C4201）
－ 512×9（CY7C4211）
－ $1 \mathrm{~K} \times 9$（CY7C4221）
口 $2 \mathrm{~K} \times 9$（CY7C4231）
口 $4 \mathrm{~K} \times 9$（CY7C4241）
－8K $\times 9$（CY7C4251）
■ High speed 100 MHz operation（10 ns read／write cycle time）
■ Low power（ $\mathrm{I}_{\mathrm{CC}}=35 \mathrm{~mA}$ ）
■ Fully asynchronous and simultaneous read and write operation
■ Empty，Full，and Programmable Almost Empty and Almost Full status flags

■ TTL－compatible
Expandable in width
■ Output Enable（ $\overline{\mathrm{OE}})$ pin
■ Independent read and write enable pins
－Center power and ground pins for reduced noise
■ Width－expansion capability
Space saving $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ 32－pin TQFP

Pin－compatible and functionally equivalent to IDT72421， 72201，72211，72221，72231，and 72241
－Pb－free Packages Available

Functional Description

The CY7C42X1 are high speed，low power FIFO memories with clocked read and write interfaces．All are 9 bits wide．The CY7C42X1 are pin－compatible to IDT722X1．Programmable features include Almost Full／Almost Empty flags．These FIFOs provide solutions for a wide variety of data buffering needs， including high speed data acquisition，multiprocessor interfaces， and communications buffering．
These FIFOs have 9－bit input and output ports that are controlled by separate clock and enable signals．The input port is controlled by a free－running clock（WCLK）and two write－enable pins （WEN1，WEN2／LD）．
When $\overline{W E N 1}$ is LOW and WEN2／LD is HIGH，data is written into the FIFO on the rising edge of the WCLK signal．While WEN1， WEN2／LD is held active，data is continually written into the FIFO on each WCLK cycle．The output port is controlled in a similar manner by a free－running read clock（RCLK）and two read－enable pins（REN1，REN2）．In addition，the CY7C42X1 has an output enable pin（OE）．The Read（RCLK）and Write（WCLK） clocks can be tied together for single－clock operation or the two clocks can run independently for asynchronous read／write appli－ cations．Clock frequencies up to 100 MHz are achievable．

Depth expansion is possible using one enable input for system control，while the other enable is controlled by expansion logic to direct the flow of data．

Contents

Features 1
Functional Description 1
Logic Block Diagram 1
Contents 2
Selection Guide 3
Pin Configuration 3
Functional Description 5
Architecture 5
Resetting the FIFO 5
FIFO Operation 5
Programming 5
Programmable Flag ($\overline{\mathrm{PAE}}, \overline{\mathrm{PAF}}$) Operation 7
Width Expansion Configuration 8
Flag Operation 8
Full Flag 8
Empty Flag 8
Maximum Ratings ${ }^{[4]}$ 9
Operating Range 9
Electrical Characteristics Over the Operating Range 9
Capacitance[9] 9
Switching Characteristics Over the Operating Range .. 10
Switching Waveforms 11
Typical AC and DC Characteristics 17
256×9 Synchronous FIFO 18
1K x 9 Synchronous FIFO 18
2K x 9 Synchronous FIFO 18
4K x 9 Synchronous FIFO 18
8K x 9 Synchronous FIFO 18
Package Diagrams 19
Document History Page 20
Sales, Solutions, and Legal Information 20
Worldwide Sales and Design Support 20
Products 20
PSoC Solutions 20

Selection Guide

Description		-10	-15	-25	Unit
Maximum Frequency		100	66.7	40	MHz
Maximum Access Time		8	10	15	ns
Minimum Cycle Time		10	15	25	ns
Minimum Data or Enable Setup		3	4	6	ns
Minimum Data or Enable Hold		0.5	1	1	ns
Maximum Flag Delay		8	10	15	ns
Active Power Supply Current	Commercial	35	35	35	ICC1
	Industrial	40	40	40	

	CY7C4421	CY7C4201	CY7C4211	CY7C4221	CY7C4231	CY7C4241	CY7C4251
Density	64×9	256×9	512×9	$1 \mathrm{~K} \times 9$	$2 \mathrm{~K} \times 9$	$4 \mathrm{~K} \times 9$	$8 \mathrm{~K} \times 9$

Pin Configuration

Figure 1. Pin Diagram

Table 1. Pin Definitions

Pin	Name	I/O	Description
D_{0-8}	Data Inputs	1	Data inputs for 9-bit bus.
Q ${ }_{0-8}$	Data Outputs	O	Data outputs for 9-bit bus.
WEN1	Write Enable 1	1	The only write enable to have programmable flags when device is configured. Data is written on a LOW-to-HIGH transition of WCLK when WEN1 is asserted and $\overline{\text { FF }}$ is HIGH. If the FIFO is configured to have two write enables, data is written on a LOW-to-HIGH transition of WCLK when $\overline{\text { WEN1 }}$ is LOW and WEN2/LD and $\overline{\mathrm{FF}}$ are HIGH.
WEN2/LD Dual Mode Pin	Write Enable 2	1	If HIGH at reset, this pin operates as a second write enable. If LOW at reset, this pin operates as a control to write or read the programmable flag offsets. WEN1 must be LOW and WEN2 must be HIGH to write data into the FIFO. Data is not written into the FIFO if the FF is LOW. If the FIFO is configured to have programmable flags, WEN2/LD is held LOW to write or read the programmable flag offsets.
	Load	1	
$\overline{\text { REN1, }} \overline{\text { REN2 }}$	Read Enable Inputs	1	Enables device for read operation.
WCLK	Write Clock	I	The rising edge clocks data into the FIFO when $\overline{\mathrm{WEN1}}$ is LOW, WEN2/LD is HIGH, and the FIFO is not Full. When $\overline{\text { LD }}$ is asserted, WCLK writes data into the programmable flag-offset register.

Table 1. Pin Definitions (continued)

Pin	Name	I/O	Description
RCLK	Read Clock	I	The rising edge clocks data out of the FIFO when $\overline{\text { REN1 }}$ and $\overline{\text { REN2 }}$ are LOW and the FIFO is not Empty. When WEN2/LD is LOW, RCLK reads data out of the programmable flag-offset register.
$\overline{\overline{E F}}$	Empty Flag	O	When $\overline{\text { EF }}$ is LOW, the FIFO is empty. $\overline{\text { EF }}$ is synchronized to RCLK.
$\overline{\mathrm{FF}}$	Full Flag	O	When $\overline{\text { FF }}$ is LOW, the FIFO is full. $\overline{\text { FF }}$ is synchronized to WCLK.
$\overline{\mathrm{PAE}}$	Programmable Almost Empty	O	When $\overline{\text { PAE is LOW, the FIFO is almost empty based on the almost empty offset value }}$ programmed into the FIFO.
$\overline{\overline{\text { PAF }}}$	Programmable Almost Full	O	When $\overline{\text { PAF }}$ is LOW, the FIFO is almost full based on the almost full offset value programmed into the FIFO.
$\overline{\mathrm{RS}}$	Reset	I	Resets device to empty condition. A reset is required before an initial read or write operation after power up.
$\overline{\mathrm{OE}}$	Output Enable	I	When $\overline{\mathrm{OE}}$ is LOW, the FIFO's data outputs drive the bus to which they are connected. If $\overline{O E}$ is HIGH, the FIFO's outputs are in High-Z (high-impedance) state.

Functional Description

The CY7C42X1 provides four status pins: Empty, Full, Almost Empty, Almost Full. The Almost Empty/Almost Full flags are programmable to single word granularity. The programmable flags default to Empty - 7 and Full - 7 .
The flags are synchronous - they change state relative to either the Read clock (RCLK) or the Write clock (WCLK). When entering or exiting the Empty and Almost Empty states, the flags are updated exclusively by the RCLK. The flags denoting Almost Full and Full states are updated exclusively by WCLK. The synchronous flag architecture guarantees that the flags maintain their status for at least one cycle.
All configurations are fabricated using advanced $0.65 \mu \mathrm{~N}$-Well CMOS technology. Input ESD protection is greater than 2001 V , and latch up is prevented by the use of guard rings.

Architecture

The CY7C42X1 consists of an array of 64 to 8 K words of 9 bits each (implemented by a dual-port array of SRAM cells), a read pointer, a write pointer, control signals (RCLK, WCLK, REN1, REN2, $\overline{\mathrm{WEN}} 1, \mathrm{WEN} 2, \overline{\mathrm{RS}}$), and flags ($\overline{\mathrm{EF}}, \overline{\mathrm{PAE}}, \overline{\mathrm{PAF}}, \overline{\mathrm{FF}}$).

Resetting the FIFO

During power up, the FIFO must be reset with a Reset ($\overline{\mathrm{RS}}$) cycle. This causes the FIFO to enter the Empty condition signified by EF being LOW. All data outputs $\left(\mathrm{Q}_{0-8}\right)$ go LOW $\mathrm{t}_{\mathrm{RSF}}$ after the rising edge of $\overline{\mathrm{RS}}$. For the FIFO to reset to its default state, a falling edge must occur on $\overline{\mathrm{RS}}$ and the user must not read or write while RS is LOW. All flags are guaranteed to be valid $t_{R S F}$ after $\overline{\mathrm{RS}}$ is taken LOW.

FIFO Operation

When the $\overline{\text { WEN1 }}$ signal is active LOW and WEN2 is active HIGH, data present on the D_{0-8} pins is written into the FIFO on each rising edge of the WCLK signal. Similarly, when the REN1 and REN2 signals are active LOW, data in the FIFO memory is presented on the Q_{0-8} outputs. New data is presented on each rising edge of RCLK while REN1 and REN2 are active. $\overline{\text { REN1 }}$ and REN 2 must set up teNS before RCLK for it to be a valid read function. WEN1 and WEN2 must occur $t_{\text {ENS }}$ before WCLK for it to be a valid write function.
An output enable $(\overline{\mathrm{OE}})$ pin is provided to three-state the Q_{0-8} outputs when $\overline{\mathrm{OE}}$ is asserted. When $\overline{\mathrm{OE}}$ is enabled (LOW), data in the output register is available to the Q_{0-8} outputs after t_{OE}.
The FIFO contains overflow circuitry to disallow additional writes when the FIFO is full, and underflow circuitry to disallow additional reads when the FIFO is empty. An empty FIFO
maintains the data of the last valid read on its Q_{0-8} outputs even after additional reads occur.
Write Enable 1 (WEN1). If the FIFO is configured for programmable flags, Write Enable 1 (WEN1) is the only write enable control pin. In this configuration, when Write Enable 1 (WEN1) is LOW, data can be loaded into the input register and RAM array on the LOW-to-HIGH transition of every Write clock (WCLK). Data is stored is the RAM array sequentially and independently of any on-going read operation.
Write Enable 2/Load (WEN2/LD). This is a dual-purpose pin. The FIFO is configured at Reset to have programmable flags or to have two write enables, which allows depth expansion. If Write Enable 2/Load (WEN2/LD) is set active HIGH at Reset ($\overline{\mathrm{RS}}=$ LOW), this pin operates as a second write enable pin.
If the FIFO is configured to have two write enables, when Write Enable ($\overline{\mathrm{WEN} 1}$) is LOW and Write Enable 2/Load (WEN2/LD) is HIGH, data can be loaded into the input register and RAM array on the LOW-to-HIGH transition of every Write clock (WCLK). Data is stored in the RAM array sequentially and independently of any on-going read operation.

Programming

When WEN2/LD is held LOW during Reset, this pin is the load (LD) enable for flag offset programming. In this configuration, WEN2/LD can be used to access the four 8-bit offset registers contained in the CY7C42X1 for writing or reading data to these registers.
When the device is configured for programmable flags and both WEN2/LD and WEN1 are LOW, the first LOW-to-HIGH transition of WCLK writes data from the data inputs to the empty offset least significant bit (LSB) register. The second, third, and fourth LOW-to-HIGH transitions of WCLK store data in the empty offset most significant bit (MSB) register, full offset LSB register, and full offset MSB register, respectively, when WEN2/LD and WEN1 are LOW. The fifth LOW-to-HIGH transition of WCLK while WEN2/LD and WEN1 are LOW writes data to the empty LSB register again. Figure 2 shows the registers sizes and default values for the various device types.
It is not necessary to write to all the offset registers at one time. A subset of the offset registers can be written; then by bringing the WEN2/LD input HIGH, the FIFO is returned to normal read and write operation. The next time WEN2/LD is brought LOW, a write operation stores data in the next offset register in sequence.
The contents of the offset registers can be read to the data outputs when WEN2/LD is LOW and both $\overline{\mathrm{REN} 1}$ and $\overline{\mathrm{REN} 2}$ are LOW. LOW-to-HIGH transitions of RCLK Read register contents to the data outputs. Writes and reads should not be preformed simultaneously on the offset registers.

Figure 2. Offset Register Location and Default Values

Programmable Flag (PAE, PAF) Operation

Whether the flag offset registers are programmed as described in Table 2 or the default values are used, the programmable almost-empty flag ($\overline{\mathrm{PAE}}$) and programmable almost-full flag (PAF) states are determined by their corresponding offset registers and the difference between the read and write pointers.
The number formed by the empty offset least significant bit register and empty offset most significant register is referred to as n and determines the operation of PAE. PAE is synchronized to the LOW-to-HIGH transition of RCLK by one flip-flop and is LOW when the FIFO contains n or fewer unread words. PAE is set HIGH by the LOW-to-HIGH transition of RCLK when the FIFO contains $(n+1)$ or greater unread words.
The number formed by the full offset least significant bit register and full offset most significant bit register is referred to as m and determines the operation of PAF. PAE is synchronized to the LOW-to-HIGH transition of WCLK by one flip-flop and is set LOW when the number of unread words in the FIFO is greater than or equal to CY7C4421. (64-m), CY7C4201 (256 - m), CY7C4211
(512-m), CY7C4221 ($1 \mathrm{~K}-\mathrm{m}$), CY7C4231 ($2 \mathrm{~K}-\mathrm{m}$), CY7C4241 ($4 \mathrm{~K}-\mathrm{m}$), and CY7C4251 ($8 \mathrm{~K}-\mathrm{m}$). PAF is set HIGH by the LOW-to-HIGH transition of WCLK when the number of available memory locations is greater than m .
Table 2. Writing the Offset Registers

LD	WEN	WCLK $^{[1]}$	Selection
0	0	\longleftarrow	Empty Offset (LSB) Empty Offset (MSB) Full Offset (LSB) Full Offset (MSB)
0	1	\longleftarrow	No Operation
1	0	\longleftarrow	Write Into FIFO
1	1	\sim	No Operation

Table 3. Status Flags

Number of Words in FIFO			FF	PAF	$\overline{\text { PAE }}$	$\overline{\mathrm{EF}}$
CY7C4421	CY7C4201	CY7C4211				
0	0	0	H	H	L	L
1 to $\mathrm{n}^{[2]}$	1 to $\mathrm{n}^{[2]}$	1 to $\mathrm{n}^{[2]}$	H	H	L	H
($\mathrm{n}+1$) to 32	($\mathrm{n}+1)$ to 128	($\mathrm{n}+1$) to 256	H	H	H	H
33 to (64-(m+1))	129 to (256-(m+1))	257 to (512-(m+1))	H	H	H	H
$(64-m)^{[3]}$ to 63	$(256-m)^{[3]}$ to 255	$(512-m)^{[3]}$ to 511	H	L	H	H
64	256	512	L	L	H	H

Number of Words in FIFO				$\overline{\mathrm{FF}}$	$\overline{\text { PAF }}$	$\overline{\text { PAE }}$	$\overline{\mathrm{EF}}$
CY7C4221	CY7C4231	CY7C4241	CY7C4251				
0	0	0	0	H	H	L	L
1 to $\mathrm{n}^{[2]}$	1 to $\mathrm{n}^{[2]}$	1 to $\mathrm{n}^{[2]}$	1 to $\mathrm{n}^{[2]}$	H	H	L	H
($\mathrm{n}+1$) to 512	($\mathrm{n}+1)$ to 1024	$(\mathrm{n}+1)$ to 2048	$(\mathrm{n}+1)$ to 4096	H	H	H	H
513 to (1024-(m+1))	1025 to (2048-(m+1))	2049 to (4096-(m+1))	4097 to (8192-(m+1))	H	H	H	H
$(1024-m)^{[3]}$ to 1023	$(2048-\mathrm{m})^{[3]}$ to 2047	$(4096-\mathrm{m})^{[3]}$ to 4095	$(8192-\mathrm{m})^{[3]}$ to 8191	H	L	H	H
1024	2048	4096	8192	L	L	H	H

[^0]
Width Expansion Configuration

Word width may be increased by connecting the corresponding input controls signals of multiple devices. A composite flag should be created for each of the end-point status flags ($\overline{E F}$ and FF). The partial status flags ($\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$) can be detected from any one device. Figure 3 demonstrates a 18-bit word width by using two CY7C42X1s. Any word width can be attained by adding additional CY7C42X1s.
When the CY7C42X1 is in a Width Expansion Configuration, the Read Enable (REN2) control input can be grounded (See Figure 3). In this configuration, the Write Enable 2/Load (WEN2/LD) pin is set to LOW at Reset so that the pin operates as a control to load and read the programmable flag offsets.

Flag Operation

The CY7C42X1 devices provide four flag pins to indicate the condition of the FIFO contents. Empty, Full, PAE, and PAF are synchronous.

Full Flag

The Full Flag ($\overline{\mathrm{FF}}$) goes LOW when device is full. Write operations are inhibited whenever $\overline{\mathrm{FF}}$ is LOW regardless of the state of $\overline{\mathrm{WEN}} 1$ and WEN2/LD. $\overline{\mathrm{FF}}$ is synchronized to WCLK - it is exclusively updated by each rising edge of WCLK.

Empty Flag

The Empty Flag ($\overline{\mathrm{EF}})$ goes LOW when the device is empty. Read operations are inhibited whenever $\overline{E F}$ is LOW, regardless of the state of REN1 and REN2. EF is synchronized to RCLK - it is exclusively updated by each rising edge of RCLK.

Figure 3. Block Diagram of $64 \times 9,256 \times 9,512 \times 9,1024 \times 9,2048 \times 9,4096 \times 9,8192 \times 9$ Synchronous FIFO Memory Used in a Width Expansion Configuration

Maximum Ratings ${ }^{[4]}$

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential................ -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High-Z State \qquad -0.5 V to +7.0 V
DC Input Voltage \qquad -3.0 V to +7.0 V

Output Current into Outputs (LOW)............................. 20 mA
Static Discharge Voltage...> 2001V (per MIL-STD-883, Method 3015) Latch up Current.
> 200 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\text {cc }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial ${ }^{[5]}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		-10		-15		-25		Unit
				Min	Max	Min	Max	Min	Max	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~m} \end{aligned}$		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$			0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	-3.0	0.8	V
I_{IX}	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max.		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
$\mathrm{los}^{[6]}$	Output Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max.} ., \\ & \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$		-90		-90		-90		mA
Iozl lozh	Output OFF, High-Z Current	$\begin{aligned} & \overline{\mathrm{OE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{SS}}<\mathrm{V}_{\mathrm{O}}< \end{aligned}$	$-\mathrm{V}_{\mathrm{Cc}}$	-10	+10	-10	+10	-10	+10	mA
$\mathrm{ICC1}^{[7]}$	Active Power Supply Current		Commercial		35		35		35	mA
			Industrial		40		40		40	mA
$\mathrm{I}_{\mathrm{CC} 2}{ }^{[8]}$	Average Standby Current		Commercial		10		10		10	mA
			Industrial		15		15		15	mA

Capacitance ${ }^{[9]}$

Parameter	Description	Test Conditions	Max	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	5	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	pF

[^1]Figure 4. AC Test Loads and Waveforms ${ }^{[10,11]}$
R1 1.1 K ,

Switching Characteristics Over the Operating Range

Parameter	Description	-10		-15		-25		Unit
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {s }}$	Clock Cycle Frequency		100		66.7		40	MHz
t_{A}	Data Access Time	2	8	2	10	2	15	ns
$\mathrm{t}_{\text {CLK }}$	Clock Cycle Time	10		15		25		ns
$\mathrm{t}_{\text {CLKH }}$	Clock HIGH Time	4.5		6		10		ns
${ }^{\text {t CLKL }}$	Clock LOW Time	4.5		6		10		ns
$\mathrm{t}_{\text {DS }}$	Data Setup Time	3		4		6		ns
t_{DH}	Data Hold Time	0.5		1		1		ns
$\mathrm{t}_{\text {ENS }}$	Enable Setup Time	3		4		6		ns
tenh	Enable Hold Time	0.5		1		1		ns
$\mathrm{t}_{\text {RS }}$	Reset Pulse Width ${ }^{[12]}$	10		15		25		ns
$\mathrm{t}_{\text {RSS }}$	Reset Setup Time	8		10		15		ns
$\mathrm{t}_{\text {RSR }}$	Reset Recovery Time	8		10		15		ns
$t_{\text {RSF }}$	Reset to Flag and Output Time		10		15		25	ns
tolz	Output Enable to Output in Low-Z ${ }^{[13]}$	0		0		0		ns
$\mathrm{t}_{\text {OE }}$	Output Enable to Output Valid	3	7	3	8	3	12	ns
$\mathrm{t}_{\mathrm{OHz}}$	Output Enable to Output in High-Z ${ }^{[13]}$	3	7	3	8	3	12	ns
${ }^{\text {t }}$ WFF	Write Clock to Full Flag		8		10		15	ns
$\mathrm{t}_{\text {REF }}$	Read Clock to Empty Flag		8		10		15	ns
$\mathrm{t}_{\text {PAF }}$	Clock to Programmable Almost-Full Flag		8		10		15	ns
$\mathrm{t}_{\text {PAE }}$	Clock to Programmable Almost-Full Flag		8		10		15	ns
${ }^{\text {t SKEW1 }}$	Skew Time between Read Clock and Write Clock for Empty Flag and Full Flag	5		6		10		ns
${ }^{\text {tSKEW2 }}$	Skew Time between Read Clock and Write Clock for Almost-Empty Flag and Almost-Full Flag	10		15		18		ns

[^2]Switching Waveforms
Figure 5. Write Cycle Timing

Figure 6. Read Cycle Timing

WEN2

Notes

14. $\mathrm{t}_{\text {SKEW }}$ is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that $\overline{\mathrm{FF}}$ goes HIGH during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than t SKEW1 , then FF may not change state until the next WCLK rising edge.
15. $\mathrm{t}_{\text {SKEW1 }}$ is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that $\overline{\mathrm{EF}}$ goes HIGH during the current clock cycle. It the time between the rising edge of WCLK and the rising edge of RCLK is less than $\mathrm{t}_{\text {SKEW1 }}$, then EF may not change state until the next RCLK rising edge.

Figure 7. Reset Timing ${ }^{[16]}$

Figure 8. First Data Word Latency after Reset with Simultaneous Read and Write

Notes

16. The clocks (RCLK, WCLK) can be free-running during reset.
17. Holding WEN2/LD HIGH during reset makes the pin act as a second enable pin. Holding WEN2/DD LOW during reset makes the pin act as a load enable for the programmable flag offset registers.
18. After reset, the outputs are LOW if $\overline{\mathrm{OE}}=0$ and three-state if $\overline{\mathrm{OE}}=1$.
19. When $\mathrm{t}_{\text {SKEW } 1} \geq$ minimum specification, $\mathrm{t}_{\text {FRL }}$ (maximum) $=\mathrm{t}_{\mathrm{CLK}}+\mathrm{t}_{\text {SKEW1 }}$. When $\mathrm{t}_{\text {SKEW }}<$ minimum specification, $\mathrm{t}_{\text {FRL }}$ (maximum) $=$ either $2^{\star \mathrm{t}_{\mathrm{CLK}}}+\mathrm{t}_{\text {SKEW1 }}$ or $\mathrm{t}_{\text {CLK }}+$ $\mathrm{t}_{\text {SKEW1 }}$. The Latency Timing applies only at the Empty Boundary ($\mathrm{EF}=\mathrm{LOW}$).
20. The first word is available the cycle after EF goes HIGH, always.

Figure 9. Empty Flag Timing

Figure 10. Full Flag Timing

Figure 11. Programmable Almost Empty Flag Timing

Notes

21. $\mathrm{I}_{\text {SKEW2 }}$ is the minimum time between a rising WCLK and a rising RCLK edge for $\overline{\text { PAE }}$ to change state during that clock cycle. If the time between the edge of WCLK and the rising RCLK is less than $\mathrm{t}_{\text {SKEW } 2}$, then PAE may not change state until the next RCLK.
22. PAE offset $=n$.
23. If a read is performed on this rising edge of the read clock, there are Empty + $(\mathrm{n}-1)$ words in the FIFO when PAE goes LOW.

Figure 12. Programmable Almost Full Flag Timing

Figure 13. Write Programmable Registers

[^3]Figure 14. Read Programmable Registers

Typical AC and DC Characteristics

256×9 Synchronous FIFO

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C4201-15JC	J65	32-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C4201-15JXC	J65	32-Pin Pb-free Plastic Leaded Chip Carrier	

1K x 9 Synchronous FIFO

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C4221-15AXC	A32	32-Pin Pb-free Thin Quad Flatpack	Commercial
	CY7C4221-15JXC	J65	32-Pin Pb-free Plastic Leaded Chip Carrier	

2K x 9 Synchronous FIFO

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C4231-15AXC	A32	32-Pin Pb-free Thin Quad Flatpack	Commercial
	CY7C4231-15JXC	J65	32-Pin Pb-free Plastic Leaded Chip Carrier	

4K x 9 Synchronous FIFO

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C4241-10AC	A32	32-Pin Thin Quad Flatpack	Commercial
	CY7C4241-10AXC	A32	32-Pin Pb-free Thin Quad Flatpack	
	CY7C4241-10JI	J65	32-Pin Plastic Leaded Chip Carrier	Industrial
	CY7C4241-15AC	A32	32-Pin Thin Quad Flatpack	Commercial
	CY7C4241-15JC	J65	32-Pin Plastic Leaded Chip Carrier	
	CY7C4241-15JXC	J65	32-Pin Pb-free Plastic Leaded Chip Carrier	

8K x 9 Synchronous FIFO

Speed (ns)	Ordering Code	Package Name	Package Type	
10	CY7C4251-10AC	A32	32-Pin Thin Quad Flatpack	Commercial
	CY7C4251-10JC	J65	32-Pin Plastic Leaded Chip Carrier	
	CY7C4251-10JXC	J65	32-Pin Pb-free Plastic Leaded Chip Carrier	
	CY7C4251-10AI	A32	32-Pin Thin Quad Flatpack	Industrial
	CY7C4251-10AXI	A32	32-Pin Pb-free Thin Quad Flatpack	
15	CY7C4251-15AC	A32	32-Pin Thin Quad Flatpack	
	CY7C4251-15AXC	A32	32-Pin Pb-free Thin Quad Flatpack	
	CY7C4251-15JC	J65	32-Pin Plastic Leaded Chip Carrier	
	CY7C4251-15JXC	J65	32-Pin Pb-free Plastic Leaded Chip Carrier	

Package Diagrams

Figure 15. 32-Pin Pb-free Thin Plastic Quad Flatpack $7 \times 7 \times 1.0 \mathrm{~mm}$ A32, 51-85063

Figure 16. 32-Pin Pb-free Plastic Leaded Chip Carrier J65, 51-85002

Document History Page

Document Title: CY7C4421/4201/4211/4221, CY7C4231/4241/4251 64/256/512/1K/2K/4K/8K x 9 Synchronous FIFOs Document Number: 38-06016

Rev.	ECN No.	Submission Date	Orig. of Change	Description of Change		
${ }^{* *}$	106477	$09 / 10 / 01$	SZV	Change from Spec number: 38-00419 to 38-06016		
${ }^{*} \mathrm{~A}$	110725	$03 / 20 / 02$	FSG	Change Input Leakage current IIX unit from mA to $\mu \mathrm{A}$ (typo)		
${ }^{*} \mathrm{~B}$	122268	$12 / 26 / 02$	RBI	Power up requirements added to Maximum Ratings Information		
${ }^{*} \mathrm{C}$	386306	See ECN	ESH	Added Pb-free logo to top of front page Added CY7C4421-10JXC, CY7C4201-15AXC. CY7C4201-15JXC, CY7C4211-10AXI, CY7C4211-15AXC, CY7C4211-15JXC,		
CY7C4221-15AXC, CY7C4221-15JXC, CY7C4231-15JXC,					,	CY7C4231-15AXC, CY7C4241-10AXC, CY7C4241-15AXC,
:---						
CY7C4241-15JXC, CY7C4251-10JXC, CY7C4251-10AXI,						
CY7C4251-15AXC, CY7C4251-15JXC	$	$				

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive
Clocks \& Buffers
Interface
Lighting \& Power Control

Memory
Optical \& Image Sensing
PSoC
Touch Sensing
USB Controllers
Wireless/RF
cypress.com/go/automotive
cypress.com/go/clocks
cypress.com/go/interface
cypress.com/go/powerpsoc
cypress.com/go/plc
cypress.com/go/memory cypress.com/go/image
cypress.com/go/psoc
cypress.com/go/touch
cypress.com/go/USB
cypress.com/go/wireless
© Cypress Semiconductor Corporation, 2001-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[^0]: Notes

 1. The same selection sequence applies to reading from the registers. $\overline{\mathrm{REN}}$ and $\overline{\mathrm{REN}}$ are enabled and a read is performed on the LOW-to-HIGH transition of RCLK.
 2. $\mathrm{n}=$ Empty Offset ($\mathrm{n}=7$ default value).
 3. $m=$ Full Offset ($m=7$ default value).
[^1]: Notes
 4. The voltage on any input or I/O pin cannot exceed the power pin during power up.
 5. T_{A} is the "instant on" case temperature.
 6. Test no more than one output at a time for not more than one second.
 7. Outputs open. Tested at frequency $=20 \mathrm{MHz}$.
 8. All inputs $=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$, except WCLK and RCLK, which are switching at 20 MHz .
 9. Tested initially and after any design or process changes that may affect these parameters

[^2]: Notes
 10. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ for all AC parameters except for $\mathrm{t}_{\mathrm{OHz}}$.
 11. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{OHz}}$
 12. Pulse widths less than minimum values are not allowed. 13. Values guaranteed by design, not currently tested.

[^3]: Notes
 24. If a write is performed on this rising edge of the write clock, there are Full - $(m-1)$ words of the FIFO when $\overline{\text { PAF goes LOW. }}$
 25. PAF offset $=\mathrm{m}$.
 26. 64-m words for CY7C4421, 256 - m words in FIFO for CY7C4201, 512 - m words for CY7C4211, 1024 - m words for CY7C4221, 2048-m words for CY7C4231, 4096 - m words for CY7C4241, 8192 - m words for CY7C4251.
 27. $\mathrm{t}_{\text {SKEW2 }}$ is the minimum time between a rising RCLK edge and a rising WCLK edge for $\overline{\text { PAF }}$ to change during that clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than $t_{\text {SKEW2 }}$, then PAF may not change state until the next WCLK.

