$128 \mathrm{~K} \times 8$ Static RAM

Features

- High speed
$-\mathrm{t}_{\mathrm{AA}}=12 \mathrm{~ns}$
- Low active power
- 495 mW (max. 12 ns)
- Low CMOS standby power
- 55 mW (max.) 4 mW
- 2.0V Data Retention
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with $\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}$, and $\overline{\mathrm{OE}}$ options

Functional Description ${ }^{[1]}$

The CY7C109B/CY7C1009B is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable $\left(\overline{\mathrm{CE}}_{1}\right)$, an active HIGH Chip Enable $\left(\mathrm{CE}_{2}\right)$, an active LOW
Output Enable $(\overline{\mathrm{OE}})$, and three-state drivers. Writing to the Output Enable (OE), and three-state drivers. Writing to the
device is accomplished by taking Chip Enable One $\left(\mathrm{CE}_{1}\right)$ and Write Enable (WE) inputs LOW and Chip Enable Two (CE_{2}) input HIGH. Data on the eight I/O pins $\left(1 / \mathrm{O}_{0}\right.$ through $\left.\mathrm{I} / \mathrm{O}_{7}\right)$ is then written into the location specified on the address pins (A_{0} through A_{16}).
Reading from the device is accomplished by taking Chip Enable One ($\overline{\mathrm{CE}}_{1}$) and Output Enable ($\overline{\mathrm{OE})}$ LOW while forcing Write Enable (WE) and Chip Enable Two $\left(\mathrm{CE}_{2}\right)$ HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.
The eight input/output pins $\left(1 / O_{0}\right.$ through $\left.I / \mathrm{O}_{7}\right)$ are placed in a high-impedance state when the device is deselected (CE_{1} HIGH or CE_{2} LOW), the outputs are disabled ($\overline{\mathrm{OE}} \mathrm{HIGH}$), or during a write operation ($\overline{\mathrm{CE}}_{1} \mathrm{LOW}, \mathrm{CE}_{2} \mathrm{HIGH}$, and $\overline{\mathrm{WE}}$ LOW). The CY7C109B is available in standard 400-mil-wide SOJ and 32-pin TSOP type I packages. The CY7C1009B is available in a 300-mil-wide SOJ package. The CY7C1009B and CY7C109B are functionally equivalent in all other respects.

Selection Guide

	7C109B-12 7C1009B-12	7C109B-15 7C1009B-15	7C109B-20 7C1009B-20	7C109B-25 7C1009B-25	7C109B-35 7C1009B-35	Unit
Maximum Access Time	12	15	20	25	35	ns
Maximum Operating Current	90	80	75	70	60	mA
Maximum CMOS Standby Current	10	10	10	10	10	mA
Maximum CMOS Standby Current Low Power Version	2	2	2	-	-	mA

Note:

1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Temperature with
Power Applied. \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} to Relative $\mathrm{GND}^{[2]} \ldots .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{[2]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[2]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Current into Outputs (LOW) \qquad 20 mA

Static Discharge Voltage... >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range Ambient Temperature V $_{\text {CC }}$		
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C109B-12 } \\ & \text { 7C1009B-12 } \end{aligned}$		$\begin{aligned} & \text { 7C109B-15 } \\ & \text { 7C1009B-15 } \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min. }, \\ & \mathrm{l}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \end{aligned}$		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[2]}$			-0.3	0.8	-0.3	0.8	V
IIX	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$		-1	+1	-1	+1	$\mu \mathrm{A}$
I_{O}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-5	+5	-5	+5	$\mu \mathrm{A}$
los	Output Short Circuit Current ${ }^{[3]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max.} ., \\ & \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$			-300		-300	mA
${ }^{\text {ICC }}$	$V_{C C}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{l}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$			90		80	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-Down Current -TTL Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { or } C E_{2} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{IL}}, f=\mathrm{f}_{\mathrm{MAX}} \\ & \hline \end{aligned}$			45		40	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down Current -CMOS Inputs	$\begin{aligned} & \text { Max. }^{V_{C C}}, \\ & \mathrm{CE}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \text { or } C E_{2} \leq 0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \text { or } \mathrm{V}_{\text {IN }} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$			10		10	mA
			L		2		2	mA

Notes:
2. Minimum voltage is -2.0 V for pulse durations of less than 20 ns .
3. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

Electrical Characteristics Over the Operating Range (continued)

Parameter	Description	Test Conditions		$\begin{gathered} \text { 7C109B-20 } \\ \text { 7C1009B-20 } \end{gathered}$		$\begin{aligned} & \text { 7C109B-25 } \\ & \text { 7C1009B-25 } \end{aligned}$		$\begin{gathered} \text { 7C109B-35 } \\ \text { 7C1009B-35 } \end{gathered}$		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \end{aligned}$		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{l}_{\mathrm{LL}}=8.0 \mathrm{~mA} \end{aligned}$			0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & +0.3 \end{aligned}$	2.2	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{Cc}} \\ & +0.3 \end{aligned}$	2.2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[2]}$			-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I_{IX}	Input Load Current	GND $\leq \mathrm{V}_{1} \leq \mathrm{V}_{\text {CC }}$		-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-5	+5	-5	+5	-5	+5	$\mu \mathrm{A}$
l_{OS}	Output Short Circuit Current ${ }^{[3]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max.} . \\ & \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$			-300		-300		-300	mA
${ }^{\text {ccc }}$	V_{Cc} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{l}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \\ & \hline \end{aligned}$			75		70		60	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-Down Current -TTL Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{C E}_{1} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { or } C E_{2} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{IL}}, f=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$			30		30		25	mA
$I_{\text {SB2 }}$	Automatic CE Power-Down Current -CMOS Inputs	$\begin{aligned} & \text { Max. } V_{C C}, \\ & C E_{1} \geq V_{C C}-0.3 V, \\ & \text { or } C E_{2} \leq 0.3 V, \\ & V_{I N} \geq V_{C C}-0.3 V, \\ & \text { or } V_{I N} \leq 0.3 V, f=0 \end{aligned}$			10		10		10	mA
			L		2		-		-	mA

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	9	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8	pF

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Note:
4. Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics ${ }^{[5]}$ Over the Operating Range

Parameter	Description	$\begin{aligned} & \text { 7C109B-12 } \\ & \text { 7C1009B-12 } \end{aligned}$		$\begin{aligned} & \text { 7C109B-15 } \\ & \text { 7C1009B-15 } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	
Read Cycle						
t_{RC}	Read Cycle Time	12		15		ns
t_{AA}	Address to Data Valid		12		15	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Data Valid, $\mathrm{CE}_{2} \mathrm{HIGH}$ to Data Valid		12		15	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE LOW to Data Valid }}$		6		7	ns
t Lzoe	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\text { OE HIGH }}$ to High $\mathrm{Z}^{[6,7]}$		6		7	ns
tLzCE	$\overline{\mathrm{CE}}_{1}$ LOW to Low $\mathrm{Z}, \mathrm{CE} \mathrm{E}_{2}$ HIGH to Low $\mathrm{Z}^{[7]}$	3		3		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}_{1}$ HIGH to High Z, CE_{2} LOW to High $\mathrm{Z}^{[6,7]}$		6		7	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Power-Up, CE_{2} HIGH to Power-Up	0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}_{1}$ HIGH to Power-Down, CE_{2} LOW to Power-Down		12		15	ns
Write Cycle ${ }^{[8]}$						
${ }^{\text {tw }}$ w	Write Cycle Time ${ }^{[9]}$	12		15		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Write End, $\mathrm{CE}_{2} \mathrm{HIGH}$ to Write End	10		12		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	10		12		ns
t_{HA}	Address Hold from Write End	0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	10		12		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7		8		ns
t_{HD}	Data Hold from Write End	0		0		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low ${ }^{[7]}$	3		3		ns
thZWE	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[6,7]}$		6		7	ns

Notes:
5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{l}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
6. $t_{H Z O E}, t_{\text {HZCE }}$, and $t_{H Z W E}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
7. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{I Z C E}, t_{H Z O E}$ is less than $t_{L Z O E}$, and $t_{H Z W E}$ is less than $t_{L Z W E}$ for any given device.
8. The internal write time of the memory is defined by the overlap of CE $_{1}$ LOW, $C E_{2} \mathrm{HIGH}$, and WE LOW. CE_{1} and WE must be LOW and CE 2 HIGH to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
9. The minimum write cycle time for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ controlled, $\overline{\mathrm{OE}} \mathrm{LOW}$) is the sum of $\mathrm{t}_{\mathrm{HZWE}}$ and t_{SD}

Switching Characteristics ${ }^{[5]}$ Over the Operating Range (continued)

Parameter	Description	$\begin{aligned} & \text { 7C109B-20 } \\ & \text { 7C1009B-20 } \end{aligned}$		$\begin{aligned} & \text { 7C109B-25 } \\ & \text { 7C1009B-25 } \end{aligned}$		$\begin{aligned} & \text { 7C109B-35 } \\ & \text { 7C1009B-35 } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Min.	
Read Cycle								
t_{RC}	Read Cycle Time	20		25		35		ns
t_{AA}	Address to Data Valid		20		25		35	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Data Valid, $\mathrm{CE}_{2} \mathrm{HIGH}$ to Data Valid		20		25		35	ns
$\mathrm{t}_{\text {doe }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		8		10		15	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[6,7]}$		8		10		15	ns
tzZCE	$\overline{\mathrm{CE}}_{1}$ LOW to Low Z, CE_{2} HIGH to Low $\mathrm{Z}^{[7]}$	3		5		5		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}_{1}$ HIGH to High Z, CE_{2} LOW to High $\mathrm{Z}^{[6,7]}$		8		10		15	ns
t_{PU}	$\overline{\mathrm{CE}}_{1}$ LOW to Power-Up, $\mathrm{CE}_{2} \mathrm{HIGH}$ to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}_{1} \mathrm{HIGH}$ to Power-Down, CE_{2} LOW to Power-Down		20		25		35	ns
Write Cycle ${ }^{[8]}$								
t_{wc}	Write Cycle Time ${ }^{[9]}$	20		25		35		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Write End, $\mathrm{CE}_{2} \mathrm{HIGH}$ to Write End	15		20		25		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	15		20		25		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	12		15		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		15		20		ns
$t_{\text {HD }}$	Data Hold from Write End	0		0		0		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low ${ }^{[7]}$	3		5		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[6,7]}$		8		10		15	ns

Data Retention Characteristics Over the Operating Range (Low Power version only)

Parameter	Description	Conditions	Min.	Max	Unit
$V_{\text {DR }}$	V_{CC} for Data Retention	$\begin{aligned} & \text { No input may exceed } \mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}, \\ & \mathrm{CE}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{CE}_{2} \leq 0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$	2.0		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current			150	$\mu \mathrm{A}$
$\mathrm{t}_{\text {CDR }}$	Chip Deselect to Data Retention Time		0		ns
t_{R}	Operation Recovery Time		200		$\mu \mathrm{s}$

Data Retention Waveform

Switching Waveforms

Read Cycle No. ${ }^{[10,11]}$

Read Cycle No. $2\left(\overline{\mathrm{OE}}\right.$ Controlled) ${ }^{[11,12]}$

Write Cycle No. $1\left(\overline{C E}_{1}\right.$ or CE_{2} Controlled) ${ }^{[13,14]}$

Notes:

10. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IL}}, \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IH}}$.
11. WE is HIGH for read cycle.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}_{1}$ transition LOW and CE_{2} transition HIGH .

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ HIGH During Write) ${ }^{[13,14]}$

Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[14]}$

Notes:

13. Data I / O is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
14. If CE_{1} goes HIGH or CE_{2} goes LOW simultaneously with WE going HIGH, the output remains in a high-impedance state.
15. During this period the I/Os are in the output state and input signals should not be applied.

Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\mathrm{CE}_{\mathbf{2}}$	$\overline{\mathbf{O E}}$	$\overline{\mathrm{WE}}$	$\mathbf{O}_{\mathbf{0}}-\mathbf{I / \mathbf { O } _ { \mathbf { 7 } }}$	Mode	Power
H	X	X	X	High Z	Power-Down	Standby ($\left.\mathrm{I}_{\mathrm{SB}}\right)$
X	L	X	X	High Z	Power-Down	Standby ($\left.\mathrm{I}_{\mathrm{SB}}\right)$
L	H	L	H	Data Out	Read	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	H	X	L	Data In	Write	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	H	H	H	High Z	Selected, Outputs Disabled	Active (I $\left.\mathrm{I}_{\mathrm{CC}}\right)$

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C109B-12VC	V33	32-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1009B-12VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C109B-12ZC	Z32	32-Lead TSOP Type I	
	CY7C109B-12ZXC	Z32	32-Lead TSOP Type I (Pb-Free)	
15	CY7C109BL-15VC	V33	32-Lead (400-Mil) Molded SOJ	Commercial
	CY7C109B-15VC	V32	32-Lead (400-Mil) Molded SOJ	
	CY7C1009B-15VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C109B-15ZC	Z32	32-Lead TSOP Type I	
	CY7C109B-15ZXC	Z32	32-Lead TSOP Type I (Pb-Free)	
	CY7C109BL-15VI	V33	32-Lead (400-Mil) Molded SOJ	Industrial
	CY7C109B-15VI	V33	32-Lead (400-Mil) Molded SOJ	
	CY7C1009B-15VI	V32	32-Lead (300-Mil) Molded SOJ	
20	CY7C109B-20VC	V33	32-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1009B-20VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C109B-20VI	V33	32-Lead (400-Mil) Molded SOJ	Industrial
	CY7C109B-20ZC	Z32	32-Lead TSOP Type I	Commercial
	CY7C109B-20ZXC	Z32	32-Lead TSOP Type I (Pb-Free)	
25	CY7C109B-25VC	V33	32-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1009B-25VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C109B-25VI	V33	32-Lead (400-Mil) Molded SOJ	Industrial
	CY7C109B-25ZC	Z32	32-Lead TSOP Type I	Commercial
	CY7C109B-25ZI	Z32	32-Lead TSOP Type I	Industrial
35	CY7C109B-35VC	V33	32-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1009B-35VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C109B-35VI	V33	32-Lead (400-Mil) Molded SOJ	Industrial
Please contact local sales representative regarding availability of parts				

Package Diagrams

32-Lead (300-Mil) Molded SOJ V32

32-Lead (400-Mil) Molded SOJ V33

DIMENSIDNS IN INCHES $\frac{M I N_{1}}{M A X}$

Package Diagrams (continued)

32-Lead Thin Small Outline Package Type I ($8 \times 20 \mathrm{~mm}$) Z32

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY7C109B, CY7C1009 128K x 8 SRAM Document Number: 38-05038				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
$* *$	106832	$09 / 22 / 01$	SZV	Change from Spec number: 38-00971 to 38-05038
*A	116467	$09 / 16 / 02$	CEA	Add applications foot note to data sheet, page 1
*B	397875	See ECN	NXR	Changed address of Cypress Semiconductor Corporation on Page\# 1 from "3901 North First Street" to "198 Champion Court" Updated the Ordering Information Table on page 8.

