

256K x 16 Static RAM

Features

• Low voltage range:

- CY62146V18: 1.75V-1.95V

- Ultra-low active, standby power
- Easy memory expansion with CE and OE features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- CMOS for optimum speed/power

Functional Description

The CY62146V18 is a high-performance CMOS static RAM organized as 262,144 words by 16 bits. These devices feature advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL™) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected (CE HIGH). The input/output pins (I/O₀ through

 I/O_{15}) are placed in a high-impedance state when deselected (CE HIGH), outputs are disabled (OE HIGH), BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

Writing to the device is accomplished by taking Chip Enable $(\overline{\underline{CE}})$ and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_{16}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{17}$).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the <u>add</u>ress pins will appear on I/O₀ to I/O₇. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of read and write modes.

The CY62146V18 is available in 48-Ball FBGA packaging.

MoBL2 and More Battery Life are trademarks of Cypress Semiconductor Corporation.

Pin Configurations

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied –55°C to +125°C Supply Voltage to Ground Potential -0.5V to +2.4V DC Voltage Applied to Outputs in High Z State $^{[1]}$ -0.5V to V $_{\rm CC}$ + 0.5V

DC Input Voltage^[1]......-0.5V to V_{CC} + 0.5V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Device	Range	Ambient Temperature	v _{cc}	
CY62146V18	Industrial	-40°C to +85°C	1.75V to 1.95V	

Product Portfolio

						Power Dis	sipation (In	dustrial)
	V _{CC} Range			Operating (I _{CC})		Standby (I _{SB2})		
Product	V _{CC(min.)}	V _{CC(typ.)} ^[2]	V _{CC(max.)}	Power	Typ. ^[2]	Maximum	Typ. ^[2]	Maximum
CY62146V18	1.75V	1.80V	1.95V	Std	3 mA	7 mA	20 μΑ	50 μΑ

Notes:

- V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

Electrical Characteristics Over the Operating Range

				CY62146V18		18	
Parameter	Description	Test Condi	Min.	Typ. ^[2]	Max.	Unit	
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.1 \text{ mA}$	$V_{CC} = 1.75V$	1.5			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	V _{CC} = 1.75V			0.2	V
V _{IH}	Input HIGH Voltage		$V_{CC} = 1.95V$	1.4		V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage		$V_{CC} = 1.75V$	-0.5		0.4	V
I _{IX}	Input Load Current	$GND \leq V_1 \leq V_{CC}$	•	-1	<u>+</u> 1	+1	μΑ
I _{OZ}	Output Leakage Current	GND ≤ V _O ≤ V _{CC} , Ou	GND ≤ V _O ≤ V _{CC} , Output Disabled			+1	μΑ
I _{CC}	V _{CC} Operating Supply Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC},$ CMOS Levels	V _{CC} = 1.95V		7	15	mA
		I _{OUT} = 0 mA, f = 1 M CMOS Levels	Hz,		1	2	mA
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs	$\begin{tabular}{ll} \hline \hline \hline CE & \ge V_{CC} - 0.3V, \\ V_{IN} & \ge V_{CC} - 0.3V \text{ or } \\ V_{IN} & \le 0.3V, f = f_{MAX} \\ \hline \end{tabular}$			100	μА	
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs		V _{CC} = 1.95V Std.		20	50	μΑ

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	8	pF

Thermal Resistance

Description	Test Conditions	Symbol	BGA	Unit
Thermal Resistance (Junction to Ambient) ^[3]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	55	°C/W
Thermal Resistance (Junction to Case) ^[3]		ΘJC	16	°C/W

Note:

3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

OUTPUT•
$$R_{TH}$$

Parameters	1.8V	Unit
R1	15294	Ohms
R2	11300	Ohms
R _{TH}	6500	Ohms
V _{TH}	0.85V	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[2]	Max.	Unit	
V _{DR}	V _{CC} for Data Retention		1.0		1.95	V	
I _{CCDR}	Data Retention Current	V_{CC} = 1.0V CE ≥ V_{CC} – 0.3V, V_{IN} ≥ V_{CC} – 0.3V or V_{IN} ≤ 0.3V No input may exceed V_{CC} + 0.3V	Std		10	25	μА
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		·	0			ns
t _R ^[4]	Operation Recovery Time			85			ns

Note:

Data Retention Waveform

^{4.} Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 10~\mu s$ or stable $V_{CC(min.)} \ge 10~\mu s$.

Switching Characteristics Over the Operating Range^[5]

		85			
Parameter	Description	Min. Max.		Unit	
READ CYCLE	·				
t _{RC}	Read Cycle Time	85		ns	
t _{AA}	Address to Data Valid		85	ns	
t _{OHA}	Data Hold from Address Change	10		ns	
t _{ACE}	CE LOW to Data Valid		85	ns	
t _{DOE}	OE LOW to Data Valid		45	ns	
t _{LZOE}	OE LOW to Low Z ^[6, 7]	5		ns	
t _{HZOE}	OE HIGH to High Z ^[7]		25	ns	
t _{LZCE}	CE LOW to Low Z ^[6]	10		ns	
t _{HZCE}	CE HIGH to High Z ^[6, 7]		25	ns	
t _{PU}	CE LOW to Power-Up 0			ns	
t _{PD}	CE HIGH to Power-Down 85		85	ns	
t _{DBE}	BHE / BLE LOW to Data Valid	BHE / BLE LOW to Data Valid		ns	
t _{LZBE}	BHE / BLE LOW to Low Z	5		ns	
t _{HZBE}	BHE / BLE HIGH to High Z		25	ns	
WRITE CYCLE ^[8, 9]	•		1	•	
t _{WC}	Write Cycle Time	85		ns	
t _{SCE}	CE LOW to Write End	75		ns	
t _{AW}	Address Set-Up to Write End	75		ns	
t _{HA}	Address Hold from Write End	0		ns	
t _{SA}	Address Set-Up to Write Start	0		ns	
t _{PWE}	WE Pulse Width	65		ns	
t _{BW}	BHE / BLE Pulse Width	75		ns	
t_{SD}	Data Set-Up to Write End	45		ns	
t _{HD}	Data Hold from Write End	0		ns	
t _{HZWE}	WE LOW to High Z ^[6, 7]		35	ns	
t _{LZWE}	WE HIGH to Low Z ^[6]	10		ns	

- Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance.

- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. The minimum write cycle time for Write Cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Switching Waveforms

Read Cycle No. 1^[10, 11]

Read Cycle No. 2 [11, 12]

Notes:

- Device is continuously selected. OE, CE = V_{IL}.
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE transition LOW.

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) $^{[8,\ 13,\ 14]}$

Write Cycle No. 2 ($\overline{\text{CE}}$ Controlled) $^{[8, 13, 14]}$

Notes:

- Data I/O is high-impedance if OE = V_{IH}.
 If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 During this period, the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) [9, 14]

Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[15]

Typical DC and AC Characteristics

Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O ₀ -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	L	Н	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Х	Х	High Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O ₀ -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})
L	L	Х	Н	Н	High Z	Output Disabled	Active (I _{CC})

Ordering Information

	Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
ĺ	85	CY62146V18 -85BAI	BA49	48-Ball Fine Pitch BGA	Industrial

Document #: 38-01046-**

Package Diagrams

48-Ball (7.00 mm x 8.5 mm x 1.10 mm) Fine Pitch BGA BA49

TOP VIEW

51-85106-B