256K x 16 Static RAM #### **Features** • Low voltage range: - CY62146V18: 1.75V-1.95V - Ultra-low active, standby power - Easy memory expansion with CE and OE features - TTL-compatible inputs and outputs - Automatic power-down when deselected - CMOS for optimum speed/power #### **Functional Description** The CY62146V18 is a high-performance CMOS static RAM organized as 262,144 words by 16 bits. These devices feature advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL™) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected (CE HIGH). The input/output pins (I/O₀ through I/O_{15}) are placed in a high-impedance state when deselected (CE HIGH), outputs are disabled (OE HIGH), BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW). Writing to the device is accomplished by taking Chip Enable $(\overline{\underline{CE}})$ and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_{16}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{17}$). Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the <u>add</u>ress pins will appear on I/O₀ to I/O₇. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of read and write modes. The CY62146V18 is available in 48-Ball FBGA packaging. MoBL2 and More Battery Life are trademarks of Cypress Semiconductor Corporation. ### **Pin Configurations** # **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied –55°C to +125°C Supply Voltage to Ground Potential -0.5V to +2.4V DC Voltage Applied to Outputs in High Z State $^{[1]}$-0.5V to V $_{\rm CC}$ + 0.5V DC Input Voltage^[1]......-0.5V to V_{CC} + 0.5V | Output Current into Outputs (LOW) | 20 mA | |--|---------| | Static Discharge Voltage(per MIL-STD-883, Method 3015) | >2001V | | Latch-Up Current | >200 mA | ### **Operating Range** | Device | Range | Ambient
Temperature | v _{cc} | | |------------|------------|------------------------|-----------------|--| | CY62146V18 | Industrial | -40°C to +85°C | 1.75V to 1.95V | | #### **Product Portfolio** | | | | | | | Power Dis | sipation (In | dustrial) | |------------|-----------------------|--------------------------------------|-----------------------|------------------------------|----------------------------|-----------------------------|----------------------------|-----------| | | V _{CC} Range | | | Operating (I _{CC}) | | Standby (I _{SB2}) | | | | Product | V _{CC(min.)} | V _{CC(typ.)} ^[2] | V _{CC(max.)} | Power | Typ. ^[2] | Maximum | Typ. ^[2] | Maximum | | CY62146V18 | 1.75V | 1.80V | 1.95V | Std | 3 mA | 7 mA | 20 μΑ | 50 μΑ | #### Notes: - V_{IL(min.)} = -2.0V for pulse durations less than 20 ns. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C. # **Electrical Characteristics** Over the Operating Range | | | | | CY62146V18 | | 18 | | |------------------|--|--|--|----------------------------|------------|------------------------|----| | Parameter | Description | Test Condi | Min. | Typ. ^[2] | Max. | Unit | | | V _{OH} | Output HIGH Voltage | $I_{OH} = -0.1 \text{ mA}$ | $V_{CC} = 1.75V$ | 1.5 | | | V | | V _{OL} | Output LOW Voltage | I _{OL} = 0.1 mA | V _{CC} = 1.75V | | | 0.2 | V | | V _{IH} | Input HIGH Voltage | | $V_{CC} = 1.95V$ | 1.4 | | V _{CC} + 0.3V | V | | V _{IL} | Input LOW Voltage | | $V_{CC} = 1.75V$ | -0.5 | | 0.4 | V | | I _{IX} | Input Load Current | $GND \leq V_1 \leq V_{CC}$ | • | -1 | <u>+</u> 1 | +1 | μΑ | | I _{OZ} | Output Leakage Current | GND ≤ V _O ≤ V _{CC} , Ou | GND ≤ V _O ≤ V _{CC} , Output Disabled | | | +1 | μΑ | | I _{CC} | V _{CC} Operating Supply
Current | $I_{OUT} = 0 \text{ mA},$
$f = f_{MAX} = 1/t_{RC},$
CMOS Levels | V _{CC} = 1.95V | | 7 | 15 | mA | | | | I _{OUT} = 0 mA, f = 1 M
CMOS Levels | Hz, | | 1 | 2 | mA | | I _{SB1} | Automatic CE
Power-Down Current—
CMOS Inputs | $\begin{tabular}{ll} \hline \hline \hline CE & \ge V_{CC} - 0.3V, \\ V_{IN} & \ge V_{CC} - 0.3V \text{ or } \\ V_{IN} & \le 0.3V, f = f_{MAX} \\ \hline \end{tabular}$ | | | 100 | μА | | | I _{SB2} | Automatic CE
Power-Down Current—
CMOS Inputs | | V _{CC} = 1.95V Std. | | 20 | 50 | μΑ | # Capacitance^[3] | Parameter | Description | Test Conditions | Max. | Unit | |------------------|--------------------|---|------|------| | C _{IN} | Input Capacitance | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 6 | pF | | C _{OUT} | Output Capacitance | $V_{CC} = V_{CC(typ.)}$ | 8 | pF | ### **Thermal Resistance** | Description | Test Conditions | Symbol | BGA | Unit | |---|---|---------------|-----|------| | Thermal Resistance (Junction to Ambient) ^[3] | Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board | Θ_{JA} | 55 | °C/W | | Thermal Resistance
(Junction to Case) ^[3] | | ΘJC | 16 | °C/W | #### Note: 3. Tested initially and after any design or process changes that may affect these parameters. ### **AC Test Loads and Waveforms** Equivalent to: THÉVENIN EQUIVALENT OUTPUT• $$R_{TH}$$ | Parameters | 1.8V | Unit | |-----------------|-------|-------| | R1 | 15294 | Ohms | | R2 | 11300 | Ohms | | R _{TH} | 6500 | Ohms | | V _{TH} | 0.85V | Volts | ## Data Retention Characteristics (Over the Operating Range) | Parameter | Description | Conditions | Min. | Typ. ^[2] | Max. | Unit | | |---------------------------------|---|--|------|---------------------|------|------|----| | V _{DR} | V _{CC} for Data Retention | | 1.0 | | 1.95 | V | | | I _{CCDR} | Data Retention Current | V_{CC} = 1.0V
CE ≥ V_{CC} – 0.3V,
V_{IN} ≥ V_{CC} – 0.3V or
V_{IN} ≤ 0.3V
No input may exceed
V_{CC} + 0.3V | Std | | 10 | 25 | μА | | t _{CDR} ^[3] | Chip Deselect to Data
Retention Time | | · | 0 | | | ns | | t _R ^[4] | Operation Recovery Time | | | 85 | | | ns | #### Note: ### **Data Retention Waveform** ^{4.} Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 10~\mu s$ or stable $V_{CC(min.)} \ge 10~\mu s$. # Switching Characteristics Over the Operating Range^[5] | | | 85 | | | | |-------------------------------|-------------------------------------|-----------------------------|----|------|--| | Parameter | Description | Min. Max. | | Unit | | | READ CYCLE | · | | | | | | t _{RC} | Read Cycle Time | 85 | | ns | | | t _{AA} | Address to Data Valid | | 85 | ns | | | t _{OHA} | Data Hold from Address Change | 10 | | ns | | | t _{ACE} | CE LOW to Data Valid | | 85 | ns | | | t _{DOE} | OE LOW to Data Valid | | 45 | ns | | | t _{LZOE} | OE LOW to Low Z ^[6, 7] | 5 | | ns | | | t _{HZOE} | OE HIGH to High Z ^[7] | | 25 | ns | | | t _{LZCE} | CE LOW to Low Z ^[6] | 10 | | ns | | | t _{HZCE} | CE HIGH to High Z ^[6, 7] | | 25 | ns | | | t _{PU} | CE LOW to Power-Up 0 | | | ns | | | t _{PD} | CE HIGH to Power-Down 85 | | 85 | ns | | | t _{DBE} | BHE / BLE LOW to Data Valid | BHE / BLE LOW to Data Valid | | ns | | | t _{LZBE} | BHE / BLE LOW to Low Z | 5 | | ns | | | t _{HZBE} | BHE / BLE HIGH to High Z | | 25 | ns | | | WRITE CYCLE ^[8, 9] | • | | 1 | • | | | t _{WC} | Write Cycle Time | 85 | | ns | | | t _{SCE} | CE LOW to Write End | 75 | | ns | | | t _{AW} | Address Set-Up to Write End | 75 | | ns | | | t _{HA} | Address Hold from Write End | 0 | | ns | | | t _{SA} | Address Set-Up to Write Start | 0 | | ns | | | t _{PWE} | WE Pulse Width | 65 | | ns | | | t _{BW} | BHE / BLE Pulse Width | 75 | | ns | | | t_{SD} | Data Set-Up to Write End | 45 | | ns | | | t _{HD} | Data Hold from Write End | 0 | | ns | | | t _{HZWE} | WE LOW to High Z ^[6, 7] | | 35 | ns | | | t _{LZWE} | WE HIGH to Low Z ^[6] | 10 | | ns | | - Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance. - At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. The minimum write cycle time for Write Cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}. # **Switching Waveforms** # Read Cycle No. 1^[10, 11] # **Read Cycle No. 2** [11, 12] #### Notes: - Device is continuously selected. OE, CE = V_{IL}. WE is HIGH for read cycle. Address valid prior to or coincident with CE transition LOW. # Switching Waveforms (continued) # Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) $^{[8,\ 13,\ 14]}$ # Write Cycle No. 2 ($\overline{\text{CE}}$ Controlled) $^{[8, 13, 14]}$ #### Notes: - Data I/O is high-impedance if OE = V_{IH}. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state. During this period, the I/Os are in output state and input signals should not be applied. # Switching Waveforms (continued) # Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) [9, 14] # Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[15] # **Typical DC and AC Characteristics** ### **Truth Table** | CE | WE | OE | BHE | BLE | Inputs/Outputs | Mode | Power | |----|----|----|-----|-----|--|---------------------|----------------------------| | Н | Х | Х | Х | Х | High Z | Deselect/Power-Down | Standby (I _{SB}) | | L | Н | L | L | L | Data Out (I/O ₀ -I/O ₁₅) | Read | Active (I _{CC}) | | L | Н | L | Н | L | Data Out (I/O ₀ –I/O ₇);
I/O ₈ –I/O ₁₅ in High Z | Read | Active (I _{CC}) | | L | Н | L | L | Н | Data Out (I/O ₈ –I/O ₁₅);
I/O ₀ –I/O ₇ in High Z | Read | Active (I _{CC}) | | L | Н | L | Н | Н | High Z | Output Disabled | Active (I _{CC}) | | L | Н | Н | Х | Х | High Z | Output Disabled | Active (I _{CC}) | | L | L | Х | L | L | Data In (I/O ₀ -I/O ₁₅) | Write | Active (I _{CC}) | | L | L | Х | Н | L | Data In (I/O ₀ –I/O ₇);
I/O ₈ –I/O ₁₅ in High Z | Write | Active (I _{CC}) | | L | L | Х | L | Н | Data In (I/O ₈ –I/O ₁₅);
I/O ₀ –I/O ₇ in High Z | Write | Active (I _{CC}) | | L | L | Х | Н | Н | High Z | Output Disabled | Active (I _{CC}) | # **Ordering Information** | | Speed
(ns) | Ordering Code | Package
Name | Package Type | Operating
Range | |---|---------------|-------------------|-----------------|------------------------|--------------------| | ĺ | 85 | CY62146V18 -85BAI | BA49 | 48-Ball Fine Pitch BGA | Industrial | Document #: 38-01046-** Package Diagrams #### 48-Ball (7.00 mm x 8.5 mm x 1.10 mm) Fine Pitch BGA BA49 TOP VIEW 51-85106-B