

Current Transducer CT 50-T

For very accurate measurements of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

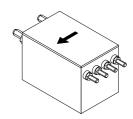
Preliminary

Electrical data

I _{PN}	Primary nominal r.m.s. current	50	Α
I _P	Primary current, measuring range	0 ± 75	Α
$\dot{\mathbf{V}}_{OUT}$	Analog output voltage	5	V
K _N	Conversion ratio	50 A / 5 V	
R,	Load resistance	> 500	Ω
C,	Capacitance loading	£ 5	nF
tc	Output short-circuit duration 1)	∞	s
V _c	Supply voltage (± 5 %)	± 15	V
I _C	Current consumption	$90 + V_{OUT}/R_{\perp}$	mΑ
$\mathbf{V}_{_{d}}$	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn	6	kV

Accuracy - Dynamic performance data

\mathbf{X}_{G}	Overall accuracy @ I PN	- 25°C + 70°C	± 0.1		%
V _	Offset voltage @ I ₅ = 0	T _A = 25°C - 25°C + 70°C	Тур	Max ± 0.4	m√
O	- '	- 25°C + 70°C		± 0.6	m۷
f	Frequency bandwidth (- 3 dB)	@ 10 % of I _{PN}	DC 9	500	kHz


General data

T_A	Ambient operating temperature	- 25 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
m	Mass	670	g
	Standards 2)	EN 50178	

Notes: 1) If the short-circuit has a duration more than 1 s, the primary current of the supply voltage must be interrupted for a short time to restore the transducer to proper working order. The internal protection is done by PTC resistors

²⁾ A list of corresponding tests is available

$I_{DN} = 50 A$

Features

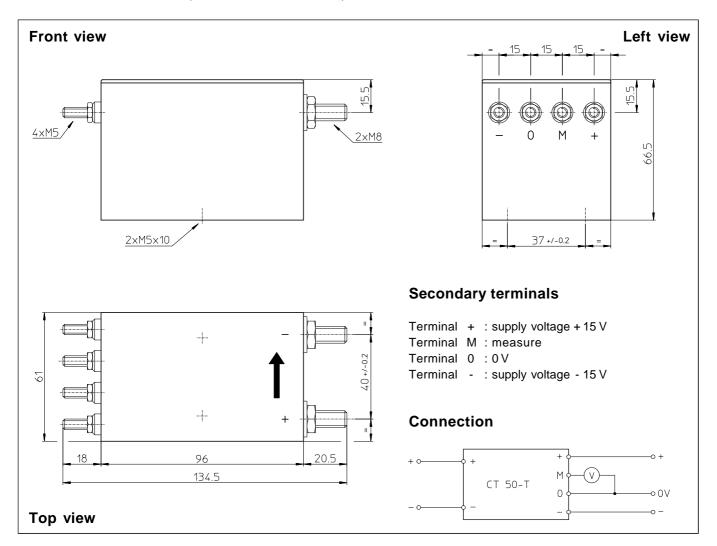
- Closed loop (compensated) current transducer
- Insulated plastic case recognized according to UL 94-V0
- · Patent pending.

Advanced features

- $\mathbf{f} = 500 \text{ kHz}$
- $X_G = \pm 0.1 \%$ (- 25°C .. + 70°C).

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

980814/5

Dimensions CT 50-T (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary Fastening torque
- Connection of secondary Fastening torque
- ± 0.3 mm 2 x M5 screws M8 threaded studs 9 Nm or 6.63 Lb - Ft M5 threaded studs

2.2 Nm or 1.62 Lb - Ft

Remarks

- V_{OLIT} is positive when I_P flows in the direction of the arrow.
- This transducer induces into the primary circuit a square wave of 7 mV amplitude (frequency » 220 Hz). This voltage can induce an AC current in the primary if the primary impedance is low.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.