CLE400F Four leaded Multiple Emitter Chip Surface Mount Package

March, 2002

features

- ±70° emission angle
- wide variety of chip combinations
- wide variety of lenses and apertures

description

The CLE400F can contain three 850 nm IRED chips which feature double/ double heterojunction (DDH) construction for increased quantum efficiency and reliability. This device is one example of a very broad line of devices made possible by four leaded package configuration. One to three chips can be attached. Multiple chip devices can be series or parallel connected. Wavelengths can range from ultra-violet (390nm) through the visible spectrum into the near infrared (940nm). Also different lenses, apertures and lead configurations are available. The standard lensing is clear epoxy.

0.110 (2.81) 0.056 (1.42) -0.006 (0.15) 0.025 (0.63) PIN 1 MARK -0.028 (0.71) 0.012 (0.30)-2 (3) (4) -0.006 (0.15) 0.056 (1.42) 0.063 (1.60) 0.275 ± 0.010 (6.99 ± 0.25) 0.063 (1.60) 0.032 (0.81) 0.075 (1.89) (1)3 4 ⊣0.069 (1.75) -0.038 (0.97) All dimensions are in inches (millimeters). Unless otherwise indicated, tolerance is ± 0.005 (0.12)

absolute maximum ratings (T _A = 25°C unless otherwis	e stated)
storage temperature	40°C to +100°C
operating temperature	40°C to +100°C
lead soldering temperature ⁽¹⁾ continuous forward current ⁽²⁾	260°C
continuous forward current ⁽²⁾	20mA/per chip
peak forward current (1.0ms pulse width, 10% duty cycle)	
reverse voltage	
continuous power dissipation ⁽³⁾	80mW

notes:

- 1. For 5 seconds maximum
- 2. Derate linearly 0.213mA/°C from 25°C free air temperature to $T_A = +100$ °C.
- 3. Derate linearly 0.85mW/°C from 25°C free air temperature to $T_A = +100$ °C.

ymbol	parameter	min	typ	max	units	test conditions
	·	•	•	•	•	
Po	Total power output ⁽⁴⁾	9.0	13.0	-	mW	I _F = 60mA (total cathode current)
V_{F}	Forward voltage	-	-	1.4	V	I_F = 20mA per chip
I _R	Reverse current	-	-	10	μA	V _R = 5V
λρ	Peak wavelength emission	-	850	-	nm	I _F = 20mA
BW	Spectral bandwidth at half power points	-	60	-	nm	I _F = 20mA
θ_{HP}	Emission angle at half power points	-	140	-	deg.	I _F = 20mA

note: 4. Power output is measured in an integrating sphere.

Clairex reserves the right to make changes at any time to improve design and to provide the best possible product.

Revised 4/17/07