October 1987 Revised June 2000

CD4010C Hex Buffers (Non-Inverting)

FAIRCHILD

SEMICONDUCTOR

CD4010C Hex Buffers (Non-Inverting)

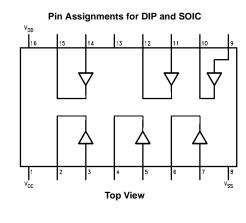
General Description

The CD4010C hex buffers are monolithic complementary MOS (CMOS) integrated circuits. The N- and P-channel enhancement mode transistors provide a symmetrical circuit with output swings essentially equal to the supply voltage. This results in high noise immunity over a wide supply voltage range. No DC power other than that caused by leakage current is consumed during static conditions. All inputs are protected against static discharge. These gates may be used as hex buffers, CMOS to DTL or TTL interface or as CMOS current drivers. Conversion ranges are from 3V to 15V providing V_{CC} \leq V_{DD}. The devices also have buffered outputs which improve transfer characteristics by providing very high gain.

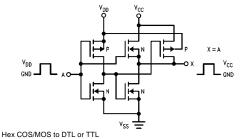
Features

- Wide supply voltage range: 3.0V to 15V
- Low power: 100 nW (typ.)
- High noise immunity: 0.45 V_{DD} (typ.)
- High current sinking: 8 mA (min.) at V_O = 0.5V capability: and V_{DD} = 10V

Applications


- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm system
- Industrial controls
- Remote metering
- Computers

Ordering Code:


Order Number	Package Number	Package Description
CD4010CM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4010CN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Schematic Diagram

converter (inverting). Connect V_{CC} to DTL or TTL supply. Connect V_{DD} to COS/MOS supply.

© 2000 Fairchild Semiconductor Corporation DS005945

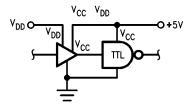
www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

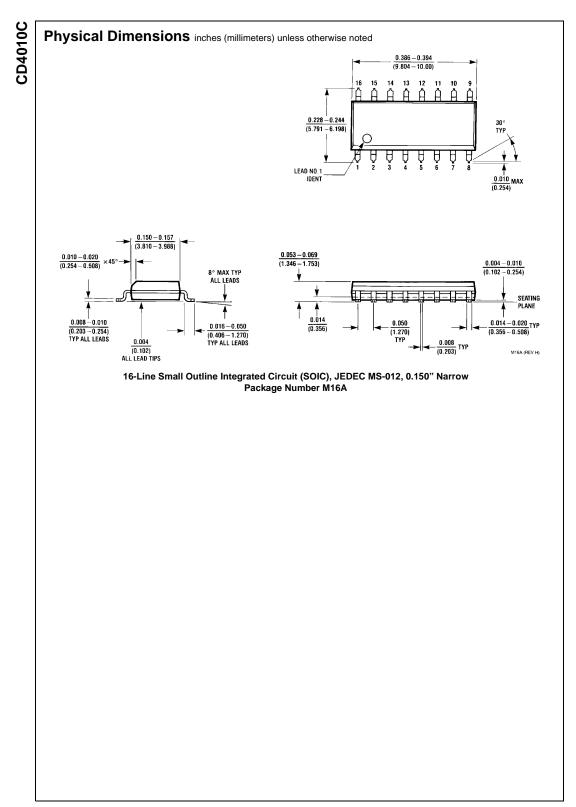
Voltage at Any Pin (Note 2) Operating Temperature Range	V_{SS} – 0.3V to V_{SS} +15.5V $-45^\circ C$ to +85 $^\circ C$
Storage Temperature Range (T _S)	−65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C
Operating Range (V _{DD})	$V_{SS}{+}3V$ to $V_{SS}{+}15V$

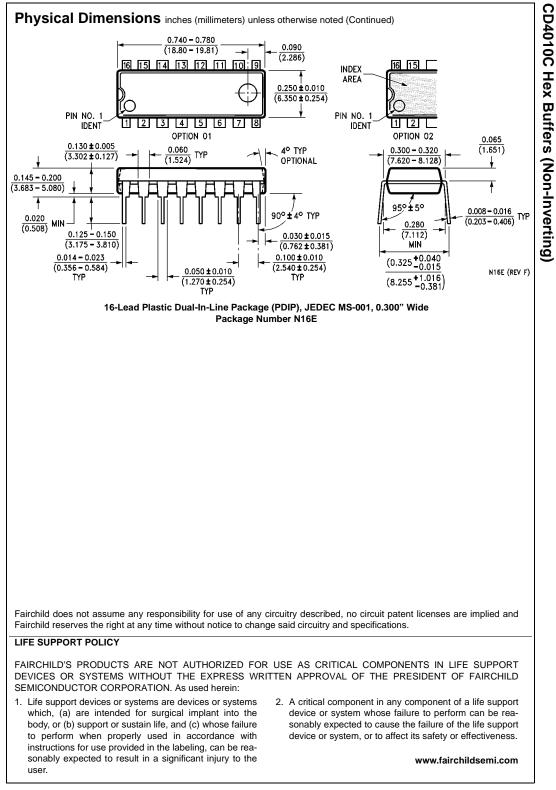
Note 1: "Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits." Note 2: This device should not be connected to circuits with the power on because high transient voltage may cause permanent damage.

DC Electrical Characteristics


		Test Conditions		Limits							
Symbol	Characteristics	(Vo	lts)	-4	0°C		+25°C		+85	5°C	Units
		Vo	V _{DD}	Min	Max	Min	Тур	Max	Min	Max	1
I _{CC}	Quiescent Device		5		3		0.03	3		42	μΑ
	Current		10		5		0.05	5		70	μΑ
PD	Quiescent Device		5		15		0.15	15		210	μW
	Dissipation/Package		10		50		0.5	50		700	μW
	Output Voltage		5		0.01		0	0.01		0.05	V
V _{OL}	LOW Level		10		0.01		0	0.01		0.05	V
V _{OH}	HIGH Level		5	4.99		4.99	5		4.95		V
			10	9.99		9.99	10		9.95		V
	Noise Immunity										
	(All Inputs)										
V _{NL}		V _O ≥ 1.5	5	1.6		1.5	2.25		1.4		V
		$V_{O} \ge 3.0$	10	3.2		3	4.5		2.9		V
V _{NH}		$V_{O} \ge 3.5$	5	1.4		1.5	2.25		1.5		V
		V _O ≥ 7.0	10	2.9		3	4.5		3		V
	Output Drive Current	0.4	5	3.6		3			2.4		mA
I _D N	N-Channel (Note 3)	0.5	10	9.6		8			6.4		mA
I _D P	P-Channel (Note 3)	2.5	5	-1.5		-1.25			-1		mA
		9.5	10	-0.72		-0.6			-0.48		mA
I _{IN}	Input Current	Ì					10				pА

Note 3: I_DN and I_DP are tested one output at a time.


Symbol	c, C _L = 15 pF, unless otherwise i	Test Con					
			V _{DD} (Volts)	Min	Тур	Max	Units
t _{PHL}	Propagation Delay Time:	$V_{CC} = V_{DD}$	5	-	15	70	
t _{PLH}	HIGH-to-LOW Level (t _{PHL})		10	_	10	40	ns
		$V_{DD} = 10V$		—	10	35	
		$V_{CC} = 5V$					
	LOW-to-HIGH Level (t _{PLH})	$V_{CC} = V_{DD}$	5	_	50	100	
			10	—	25	70	
		$V_{DD} = 10V$		_	15	40	ns
		$V_{CC} = 5V$					
t _{THL}	Transition Time:	$V_{CC} = V_{DD}$	5	_	20	60	ns
t _{TLH}	HIGH-to-LOW Level (t _{THL})		10	—	16	50	
	LOW-to-HIGH Level (t _{TLH})	$V_{CC} = V_{DD}$	5	_	80	160	ns
			10	—	50	120	
	Input Capacitance (C ₁)	Any Input		_	5	_	pF


Note 4: AC Parameters are guaranteed by DC correlated testing.

Typical Application

www.fairchildsemi.com

www.fairchildsemi.com