
BDW93, BDW93A, BDW93B, BDW93C NPN SILICON POWER DARLINGTONS

BOURNS®

- Designed for Complementary Use with BDW94, BDW94A, BDW94B and BDW94C
- 80 W at 25°C Case Temperature
- 12 A Continuous Collector Current
- Minimum h_{FE} of 750 at 3V, 5 A

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING			VALUE	UNIT	
	BDW93		45		
Collector-base voltage ($I_E = 0$)	BDW93A	N/	60	v	
	BDW93B	V _{CBO}	80	v	
	BDW93C		100		
Collector-emitter voltage ($I_B = 0$)	BDW93		45		
	BDW93A	V	60	V	
	BDW93B	V _{CEO}	80		
	BDW93C		100		
Emitter-base voltage			5	V	
Continuous collector current			12	A	
Continuous base current			0.3	A	
Continuous device dissipation at (or below) 25°C case temperature (see Note 1)			80	W	
Continuous device dissipation at (or below) 25°C free air temperature (see Note 2)			2	W	
Operating junction temperature range			-65 to +150	°C	
Storage temperature range			-65 to +150	°C	
Operating free-air temperature range		T _{stg} T _A	-65 to +150	°C	

NOTES: 1. Derate linearly to 150°C case temperature at the rate of 0.64 W/°C.

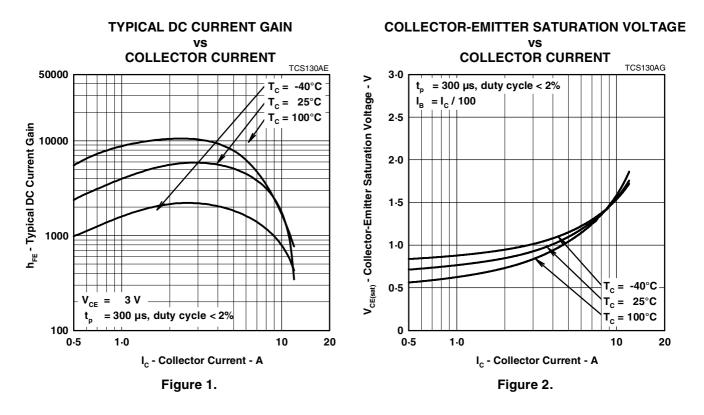
2. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.

PRODUCT INFORMATION

BDW93, BDW93A, BDW93B, BDW93C NPN SILICON POWER DARLINGTONS

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER		TEST (CONDITIONS		MIN	ТҮР	MAX	UNIT
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = 100 mA	I _B = 0	(see Note 3)	BDW93 BDW93A BDW93B BDW93C	45 60 80 100			V
I _{CEO}	Collector-emitter cut-off current	$V_{CB} = 40 V$ $V_{CB} = 60 V$ $V_{CB} = 80 V$ $V_{CB} = 80 V$	$I_{B} = 0$ $I_{B} = 0$ $I_{B} = 0$ $I_{B} = 0$		BDW93 BDW93A BDW93B BDW93C			1 1 1 1	mA
I _{СВО}	Collector cut-off current	$V_{CB} = 80 V$ $V_{CB} = 100 V$ $V_{CB} = 45 V$ $V_{CB} = 60 V$	$I_{E} = 0$	$T_{C} = 150^{\circ}C$ $T_{C} = 150^{\circ}C$ $T_{C} = 150^{\circ}C$ $T_{C} = 150^{\circ}C$	BDW93 BDW93A BDW93B BDW93C BDW93 BDW93A BDW93B BDW93C			0.1 0.1 0.1 5 5 5 5 5	mA
I _{EBO}	Emitter cut-off current	V _{EB} = 5 V	$I_{\rm C} = 0$					2	mA
h _{FE}	Forward current transfer ratio	$V_{CE} = 3 V$ $V_{CE} = 3 V$ $V_{CE} = 3 V$	$I_{\rm C} = 10 {\rm A}$ $I_{\rm C} = 5 {\rm A}$	(see Notes 3 and	14)	1000 100 750		20000	
V _{CE(sat)}	Collector-emitter saturation voltage	$I_B = 20 \text{ mA}$ $I_B = 100 \text{ mA}$	0	(see Notes 3 and 4)				2 3	V
V _{BE(sat)}	Base-emitter saturation voltage	I _B = 20 mA I _B = 100 mA	I _C = 5 A I _C = 10 A	(see Notes 3 and	14)			2.5 4	V
V _{EC}	Parallel diode forward voltage	$I_{E} = 5 A$ $I_{E} = 10 A$	I _B = 0 I _B = 0					2 4	V


NOTES: 3. These parameters must be measured using pulse techniques, $t_p = 300 \ \mu s$, duty cycle $\leq 2\%$.

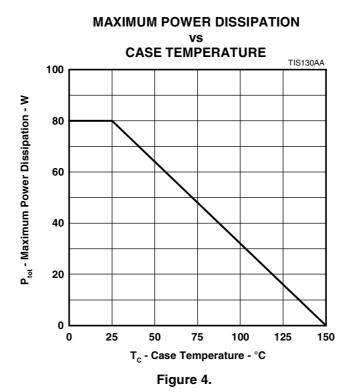
4. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

thermal characteristics

PARAMETER		MIN	ТҮР	MAX	UNIT
R _{θJC}	Junction to case thermal resistance			1.56	°C/W
R _{0JA}	Junction to free air thermal resistance			62.5	°C/W

TYPICAL CHARACTERISTICS

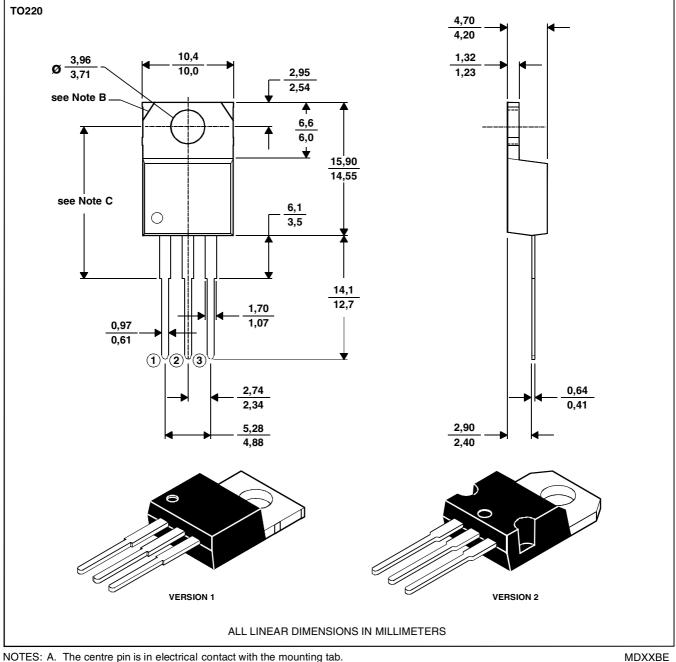
BASE-EMITTER SATURATION VOLTAGE vs **COLLECTOR CURRENT** TCS130AI 3.0 $T_c = -40^{\circ}C$ V_{BE(sat)} - Base-Emitter Saturation Voltage - V $T_c = 25^{\circ}C$ T_c 100°C = 2.5 2.0 1.5 1.0 = I_c / 100 I_B = 300 µs, duty cycle < 2% 0.5 0.5 1.0 10 20 I_c - Collector Current - A Figure 3.


PRODUCT INFORMATION

SEPTEMBER 1993 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

BDW93, BDW93A, BDW93B, BDW93C NPN SILICON POWER DARLINGTONS

THERMAL INFORMATION


PRODUCT INFORMATION

MECHANICAL DATA

TO-220

3-pin plastic flange-mount package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

B. Mounting tab corner profile according to package version.

C. Typical fixing hole centre stand off height according to package version. Version 1, 18.0 mm. Version 2, 17.6 mm.

PRODUCT INFORMATION

SEPTEMBER 1993 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.