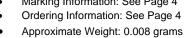
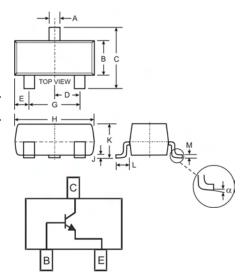


BC846A - BC8480

NPN SURFACE MOUNT SMALL SIGNAL TRANSISTOR


Please click here to visit our online spice models database.


Features

- Ideally Suited for Automatic Insertion
- Complementary PNP Types Available (BC856-BC858)
- For Switching and AF Amplifier Applications
- Lead, Halogen and Antimony Free, RoHS Compliant "Green" Device (Notes 3 and 4)
- Qualified to AEC-Q101 Standards for High Reliability

Mechanical Data

- Case: SOT-23
- Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminals: Solderable per MIL-STD-202, Method 208
- Lead Free Plating (Matte Tin Finish annealed over Alloy 42 leadframe).
- Pin Connections: See Diagram Marking Information: See Page 4 Ordering Information: See Page 4

	SOT-23						
Dim	Min	Max					
Α	0.37	0.51					
В	1.20	1.40					
С	2.30	2.50					
D	0.89	1.03					
E	0.45	0.60					
G	1.78	2.05					
Н	2.80	3.00					
J	0.013	0.10					
K	0.903	1.10					
L	0.45	0.61					
М	0.085	0.180					
α	0°	8°					
All Dimensions in mm							

Marking Code (Note 2)									
Туре	Marking								
BC846A	1A, K1Q	BC847C	1G, K1M						
BC846B	1B, K1R	BC848A	1J, K1J, K1E, K1Q						
BC847A	1E, K1E, K1Q	BC848B	1K, K1K, K1F, K1R						
BC847B	1F, K1F, K1R	BC848C	1L, K1L, K1M						

Maximum Ratings @T_A = 25°C unless otherwise specified

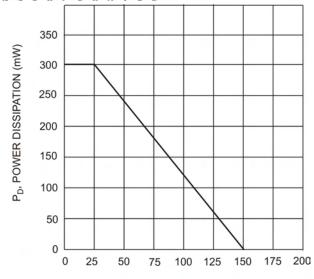
Character	istic	Symbol	Value	Unit		
Collector-Base Voltage	BC846 BC847 BC848	V _{CBO}	80 50 30	V		
Collector-Emitter Voltage	BC846 BC847 BC848	V _{CEO}	65 45 30	٧		
Emitter-Base Voltage	BC846, BC847 BC848	V _{EBO}	6.0 5.0	V		
Collector Current		Ic	100	mA		
Peak Collector Current		I _{CM}	200	mA		
Peak Emitter Current		I _{EM}	200	mA		
Power Dissipation (Note 1)		P _d	300	mW		
Thermal Resistance, Junction to Am	nbient Air (Note 1)	$R_{\theta JA}$	417	°C/W		
Operating and Storage Temperature	e Range	T_j, T_{STG}	-65 to +150	°C		

Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Diodes Inc. suggested pad layout Notes: document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

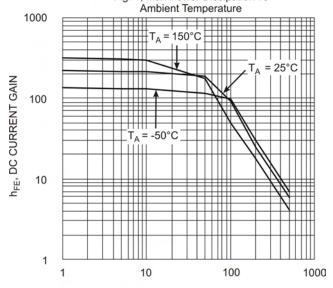
Current gain subgroup "C" is not available for BC846.

No purposefully added lead. Halogen and Antimony Free.

Product manufactured with Data Code V9 (week 33, 2008) and newer are built with Green Molding Compound. Product manufactured prior to Date Code V9 are built with Non-Green Molding Compound and may contain Halogens or Sb₂O₃ Fire Retardants.



Electrical Characteristics @T_A = 25°C unless otherwise specified


Characteris	tic	Symbol	Min	Тур	Max	Unit	Test Condition
Collector-Base Breakdown Voltage			80		_		
	BC847	$V_{(BR)CBO}$	50	_	_	V	$I_C = 10 \mu A, I_B = 0$
Callactor Emittor Brookdown Voltor	BC848 ge (Note 5) BC846		30 65				
Collector-Emitter Breakdown Voltag	ge (Note 5) BC847	V _{(BR)CEO}	45		_	V	$I_{C} = 10 \text{mA}, I_{B} = 0$
	BC848	V (BR)CEO	30	_	_	V	IC = 10111/A, IB = 0
Emitter-Base Breakdown Voltage	BC846, BC847	\/	6			V	1 1 1 1 0
(Note 3)	BC848	$V_{(BR)EBO}$	5	_	_	V	$I_E = 1 \mu A, I_C = 0$
H-Parameters							
Small Signal Current Gain	Current Gain Group A	h _{fe}		220	_	_	
	В	h _{fe}		330	_		
Input Impedance	C Current Gain Group A	h _{fe} h _{ie}		600 2.7	_	— kΩ	
input impedance	R	h _{ie}		4.5		kΩ	$V_{CE} = 5.0V, I_{C} = 2.0mA,$
	č	h _{ie}		8.7	_	kΩ	f = 1.0kHz
Output Admittance	Current Gain Group A	h _{oe}	_	18	_	μS	
·	В	h _{oe}	_	30	_	μS	
	Ç	h _{oe}	_	60	_	μS	
Reverse Voltage Transfer Ratio	A	h _{re}		1.5x10 ⁻⁴	_	_	
Current Gain Group	B C	h _{re}	_	2x10 ⁻⁴ 3x10 ⁻⁴	_	_	
DC Current Gain	Current Gain Group A	h _{re}	110	180	220		
DC Current Gain	B	h _{FE}	200	290	450	_	$V_{CE} = 5.0V, I_{C} = 2.0mA$
	(Note 5) C		420	520	800		VCE - 0.0 V, IC - 2.0111/V
Collector-Emitter Saturation Voltage	o (Noto E)	\/		90	250	mV	$I_C = 10 \text{mA}, I_B = 0.5 \text{mA}$
Collector-Emitter Saturation voltage	e (Note 5)	$V_{CE(SAT)}$	_	200	600	mv	$I_C = 100 \text{mA}, I_B = 5.0 \text{mA}$
Base-Emitter Saturation Voltage (N	lote 5)	$V_{BE(SAT)}$	_	700	_	mV	$I_C = 10 \text{mA}, I_B = 0.5 \text{mA}$
Zaco ziiiilo: Galaranen Tenage (i.		* BE(GAT)	500	900	700		$I_C = 100 \text{mA}, I_B = 5.0 \text{mA}$
Base-Emitter Voltage (Note 5)		$V_{BE(ON)}$	580	660	700 770	mV	$V_{CE} = 5.0V, I_{C} = 2.0mA$ $V_{CE} = 5.0V, I_{C} = 10mA$
Collector-Cutoff Current (Note 5)	BC846	I _{CES}			15	nA	$V_{CE} = 3.0 \text{ V}, I_C = 10111A$ $V_{CE} = 80 \text{ V}$
Compositor Cutton Cuttons (Note 5)	BC847	I _{CES}	_	_	15	nA	V _{CF} = 50V
	BC848	I _{CES}	_	_	15	nA	$V_{CE} = 30V$
		I_{CBO}		_	15	nA	$V_{CB} = 40V$
		I _{CBO}	_	_	5.0	μA	$V_{CB} = 30V, T_A = 150^{\circ}C$
Gain Bandwidth Product		f_{T}	100	300	-	MHz	$V_{CE} = 5.0V, I_{C} = 10mA,$ f = 100MHz
Collector-Base Capacitance		C_{CBO}		3.0	_	pF	$V_{CB} = 10V, f = 1.0MHz$
							$V_{CE} = 5V, I_{C} = 200\mu A,$
Noise Figure		NF	_	2	10	dB	$R_S = 2.0k\Omega$,
							$f = 1.0kHz$, $\Delta f = 200Hz$

Notes: 5. Short duration pulse test used to minimize self-heating effect.

T_A, AMBIENT TEMPERATURE (°C) Fig. 1, Max Power Dissipation vs

I_C, COLLECTOR CURRENT (mA) Fig. 3, DC Current Gain vs. Collector Current

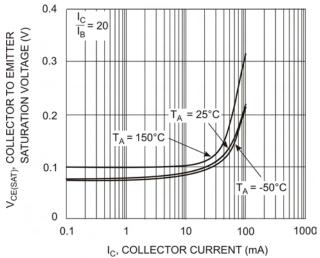
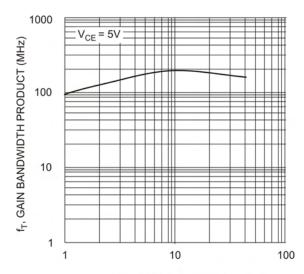
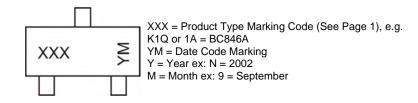



Fig. 2 Collector Emitter Saturation Voltage vs. Collector Current

I_C, COLLECTOR CURRENT (mA)
Fig. 4, Gain Bandwidth Product vs Collector Current


Ordering Information (Note 6)

Device*	Packaging	Shipping
BC84xx-7-F	SOT-23	3000/Tape & Reel

xx = device type, e.g. BC846A-7-F.

Notes: 6. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

Date Code Key

Year	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Code	J	K	L	М	N	Р	R	S	Т	U	V	W	X	Υ	Z
											· -				
Month	Jan	Fe	b	Mar	Apr	May	Ju	n	Jul	Aug	Sep	Oc	t I	Nov	Dec

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.