## High performance video signal Switcher

## Triple Circuits <br> Video Signal Switchers

## BA7602F, 03F, 06F/FS, 07F, 09F, 27FV

## -Description

These video switching ICs, which contain two or three 2-input circuits, were developed for switching TV, DVD, and other video signals. Input pin formats can be selected from bias mode ( $\mathrm{R}=20 \mathrm{k} \Omega$ ), sync-tip mode, and pedestal clamp mode. Having a large dynamic range and broad frequency characteristics, these switches are suited to a wide range of applications from audio signals to video signals.

## -Features

1) Contain three 2-input, 1-output switch circuits (BA7602F,03F,06F/06FS,07F,09F,27FV)
2) Power supply voltage ( $4.5 \sim 5.5 \mathrm{~V}$ )
3) Low power consumption
4) Good frequency characteristics
5) Large dynamic range
6) Bias input (BA7602F)

Sync-tip clamp input (BA7603F)
Pedestal clamp input (BA7606F/06FS)
Bias input + sync-tip clamp input (BA7607F,09F, 27FV)
7) Large input impedance (Typ.20k $\Omega$ )
8) Fast switching speed (Typ. 50ns)
-Use
For switching TV, DVD, and Other video signals
-Lineup

| Part No. | Circuit <br> current <br> $(\mathrm{mA})$ | Built-in circuit | Input type | Distortion <br> $(\%)$ | Maximum output <br> level <br> $\left(V_{\text {P-p }}\right)$ | Package |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BA7602F | 14.0 | 2 in 3 circuits | Bias | - | 3.1 | SOP16 |
| BA7603F | 13.0 | 2 in 3 circuits | Clamp | - | 2.9 | SOP16 |
| BA7606F/FS | 15.0 | 2 in 3 circuits | Pedestal <br> Clamp | - | 2.6 | SOP16/ <br> SSOP-A16 |
| BA7607F | 12.5 | 2 in 3 circuits | Clamp 2 <br> Bias1 | 0.007 | 3.0 | SOP16 |
| BA7609F | 12.5 | 2 in 3 circuits | Clamp 1 <br> Bias 2 | 0.007 | 3.0 | SOP16 |
| BA7627FV | 12.5 | 2 in 3 circuits | Clamp 2 <br> Bias1 | 0.007 | 3.0 | SSOP-B16 |

-Absolute Maximum Ratings ( $\mathrm{Ta}=25^{\circ} \mathrm{C}$ )

*1 Deratings is done at $5.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{Ta}=25^{\circ} \mathrm{C}$. (BA7604N, 05N , 02F, 03F, 06F, 07F, 09F, 27FV)
*2 Deratings is done at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{Ta}=25^{\circ} \mathrm{C}$. (BA7606FS)

- Operating Range ( $\mathrm{Ta}=25^{\circ} \mathrm{C}$ )

| Parameter | Symbol | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply voltage | Vcc | 4.5 | 5.0 | 5.5 | V |

- Electrical characteristics (Unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}$ and $\mathrm{Vcc}=5.0 \mathrm{~V}$ )

| Parameter |  | Symbol | Typical value |  |  |  |  |  | Unit | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 02F | 03F | 06F/FS | 07F | 09F | 27FV |  |  |
| Circuit current |  |  | Icc | 14.0 | 13.0 | 15.0 | 12.5 |  |  | mA | - |
| Maximum output level1 | Clamp | Vom1 | - | 2.9 | - | 2.9 |  |  | $V_{\text {P.P }}$ | $\begin{gathered} \mathrm{f}=1 \mathrm{kHz}, \mathrm{THD}=0.5 \%, \\ \text { with clamp } \end{gathered}$ |
| Maximum output level2 | Bias | Vom2 | 3.1 | - | - |  | 3.0 |  | $V_{\text {P.P }}$ | $\begin{array}{r} \mathrm{f}=1 \mathrm{kHz}, \mathrm{THD}=0.5 \%, \\ \text { without clamp } \end{array}$ |
| Maximum output level U | Pedestal clamp | VomU | - |  | 1.65 | - |  |  | $V_{\text {P.P }}$ | Dynamic range on positive side of clamp level |
| Maximum output level D | Pedestal clamp | VomD | - |  | 0.95 | - |  |  | $V_{\text {P-P }}$ | Dynamic range on negative side of clamp level |
| Voltage gain |  | Gv | 0 |  |  |  |  |  | dB | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=1 \mathrm{~V}_{\text {P. }}$ |
| Interchannel crosstalk |  | $\mathrm{C}_{\text {T }}$ | -65 |  |  |  |  |  | dB | $\mathrm{f}=4.43 \mathrm{MHz}, \mathrm{V}_{\mathbb{I N}}=1 \mathrm{~V}_{\mathrm{P} \cdot \mathrm{P}}$ |
| Frequency characteristic |  | Gf | 0 |  | -1 |  | 0 |  | dB | $10 \mathrm{MHz} / 1 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {P.P }}$ |
| Total harmonic distortion |  | THD | - |  |  | 0.007 |  |  | \% | $\mathrm{f}=1 \mathrm{kHz}, 1 \mathrm{Vp}-\mathrm{p}$, <br> Bias type |
| CTL pin switching level |  | $\mathrm{V}_{\text {TH }}$ | 2.5 |  |  |  |  |  | V | H: IN1 L: IN2 |
| Clamp input level |  | $\mathrm{V}_{\mathrm{ct}}$ | $\mathrm{L} \leqq 0.75$ |  |  | $\mathrm{H} \geqq 2.2$ |  |  | V | Only BA7606F/FS |

## - Cautions on use

1) Numbers and data in entries are representative design values and are not guaranteed values of the items.
2) Although we are confident in recommending the sample application circuits, carefully check their characteristics further when using them. When modifying externally attached component constants before use, determine them so that they have sufficient margins by taking into account variations in externally attached components and the Rohm LSI, not only for static characteristics but also including transient characteristics.
3) Absolute maximum ratings

If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be damaged. Do not apply voltages or temperatures that exceed the absolute maximum ratings. If you think of a case in which absolute maximum ratings are exceeded, enforce fuses or other physical safety measures and investigate how not to apply the conditions under which absolute maximum ratings are exceeded to the LSI.
4) GND potential

Make the GND pin voltage such that it is the lowest voltage even when operating below it. Actually confirm that the voltage of each pin does not become a lower voltage than the GND pin, including transient phenomena.
5) Thermal design

Perform thermal design in which there are adequate margins by taking into account the allowable power dissipation in actual states of use.
6) Shorts between pins and misinstallation

When mounting the LSI on a board, pay adequate attention to orientation and placement discrepancies of the LSI. If it is misinstalled and the power is turned on, the LSI may be damaged. It also may be damaged if it is shorted by a foreign substance coming between pins of the LSI or between a pin and a power supply or a pin and a GND.
7) Operation in strong magnetic fields

Adequately evaluate use in a strong magnetic field, since there is a possibility of malfunction.
8) A bias input coupling capacitor on the order of $10 \mu \mathrm{~F} \sim 33 \mu \mathrm{~F}$ is appropriate.
9) A clamp input coupling capacitor on the order of $0.1 \mu \mathrm{~F} \sim 1 \mu \mathrm{~F}$ is appropriate.
10) Make the clamp pulse width of the BA7606F/FS at least $1 \mu \mathrm{~s}$.


Fig. 1 BA7602F


Fig. 3 BA7606F/FS


Fig. 5 BA7609F


Fig. 2 BA7603F


Fig. 4 BA7607F, BA7627FV

CTL pin settings

| CTL | OUTPUT |
| :---: | :---: |
| $L$ | IN2 |
| $H$ | IN1 |

Pin DC voltage ( $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ )

| Pin No. | Pin DC voltage (V) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | BA7602F | BA7603F | BA7606F/FS | $\begin{aligned} & \text { BA7607F } \\ & \text { BA7627FV } \end{aligned}$ | BA7609F |
| 1 | 3.27 | 2.05 | 2.96 | 2.05 | 2.48 |
| 2 | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 |
| 3 | 1.84 | 0.65 | 1.54 | 0.65 | 1.76 |
| 4 | 0 | 0 | 0 | 0 | 0 |
| 5 | 1.84 | 0.65 | 1.54 | 0.65 | 1.76 |
| 6 | 1.84 | 0.65 | 1.54 | 1.76 | 0.65 |
| 7 | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 |
| 8 | 3.27 | 2.05 | 2.96 | 2.48 | 2.05 |
| 9 | 3.27 | 2.05 | 2.96 | 2.48 | 2.05 |
| 10 | 0 | 0 | 4.97 | 0 | 0 |
| 11 | 3.27 | 2.05 | 2.96 | 2.05 | 2.48 |
| 12 | 4.91 | 4.91 | 4.91 | 4.91 | 4.91 |
| 13 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
| 14 | 3.27 | 2.05 | 2.96 | 2.05 | 2.48 |
| 15 | 0 | 0 | 0 | 0 | 0 |
| 16 | 3.27 | 2.05 | 2.96 | 2.05 | 2.48 |

Input/Output impedance

| Parameter |  | Limits (Typical) |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 02F | 03F | 06F/FS | 07F/27FV | 09F |  |
| Input impedance | Bias | 20k | - | - | 20k |  | $\Omega$ |
| Input impedance | Clamp | - | 1.7M |  |  |  | $\Omega$ |
| Output impedance |  | 30 |  | $30 \%$ | 30 |  | $\Omega$ |

※The 6pin output impedance in the BA7606F/FS is $130 \Omega$.


Fig. 6 BA7602F, BA7603F, BA7607F, BA7609F, BA7627FV


Fig. 7 BA7606F/FS

- Reference data


Fig. 8 Circuit current vs. Supply voltage


Fig. 11 Interchannel crosstalk


Fig. 9 Frequency characteristics vs. Supply voltage
BA7606F INPUT IN2a(1pin) f=1MHz,1Vpp


Fig. 12 Switching characteristics1
$\mathrm{OFF} \rightarrow \mathrm{ON}$


Fig. 10 Frequency characteristics vs. temperature


Fig. 13 Switching characteristics2
ON $\rightarrow$ OFF

- Selection of order type



## SOP16



SSOP-A16
<Dimension>


| <Tape and Reel information> |  |
| :--- | :--- |
| Tape Embossed carrier tape <br> Quantity 2500 pcs <br> Direction <br> of feed E2 <br> (The direction is the 1pin of product is at the upper left when you hold <br> reel on the left hand and you pull out the tape on the right hand) |  |



SSOP-B16
<Dimension>
<Tape and Reel information>


```
The contents described herein are correct as of August, 2008
The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO.,LTD
- Any part of this application note must not be duplicated or copied without our permission.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer.
The products described herein utilize silicon as the main material.
The products described herein are not designed to be X ray proof.
```

The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

|  | Contact us for further information about the products. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | San Diego | TEL: +1-858-625-3630 | FAX: +1-858-625-3670 | Tianjin | TEL: +86-22-23029181 | FAX: +86-22-23029183 |
|  | Atlanta | TEL: +1-770-754-5972 | FAX: +1-770-754-0691 | Shanghai | TEL: +86-21-6279-2727 | FAX: +86-21-6247-2066 |
|  | Boston | TEL: +1-978-371-0382 | FAX: +1-928-438-7164 | Hangzhou | TEL: +86-571-87658072 | FAX: +86-571-87658071 |
|  | Chicago | TEL: +1-847-368-1006 | FAX: +1-847-368-1008 | Nanjing | TEL: +86-25-8689-0015 | FAX: +86-25-8689-0393 |
|  | Dallas | TEL: +1-469-287-5366 | FAX: +1-469-362-7973 | Ningbo | TEL: +86-574-87654201 | FAX: +86-574-87654208 |
|  | Denver | TEL: +1-303-708-0908 | FAX: +1-303-708-0858 | Qingdao | TEL: +86-532-5779-312 | FAX:+86-532-5779-653 |
| Excellence in Electronics | Detroit | TEL: +1-248-348-9920 | FAX: +1-248-348-9942 | Suzhou | TEL: +86-512-6807-1300 | FAX: +86-512-6807-2300 |
|  | Nashville | TEL: +1-615-620-6700 | FAX: +1-615-620-6702 | Wuxi | TEL: +86-510-82702693 | FAX: +86-510-82702992 |
|  | Mexico | TEL: +52-33-3123-2001 | FAX: +52-33-3123-2002 | Shenzhen | TEL: +86-755-8307-3008 | FAX: +86-755-8307-3003 |
|  | Duisseldorf | TEL: +49-2154-9210 | FAX: +49-2154-921400 | Dongguan | TEL: +86-769-8393-3320 | FAX: +86-769-8398-4140 |
|  | Munich | TEL: +49-8999-216168 | FAX: +49-8999-216176 | Fuzhou | TEL: +86-591-8801-8698 | FAX: +86-591-8801-8690 |
|  | Stuttgart | TEL: +49-711-7272-370 | FAX: +49-711-7272-3720 | Guangzhou | TEL: +86-20-3878-8100 | FAX: +86-20-3825-5965 |
|  | France | TEL: +33-1-5697-3060 | FAX: +33-1-5697-3080 | Huizhou | TEL:+86-752-205-1054 | FAX: +86-752-205-1059 |
|  | United Kingdom | TEL: +44-1-908-306700 | FAX: +44-1-908-235788 | Xiamen | TEL: +86-592-238-5705 | FAX: +86-592-239-8380 |
|  | Denmark | TEL: +45-3694-4739 | FAX: +45-3694-4789 | Zhuhai | TEL: +86-756-3232-480 | FAX: +86-756-3232-460 |
|  | Espoo | TEL: +358-9725-54491 | FAX: $+358-9-7255-4499$ | Hong Kong | TEL: +852-2-740-6262 | FAX: $+852-2-375-8971$ |
|  | Salo | TEL: +358-2-7332234 | FAX: +358-2-7332237 | Taipei | TEL: +886-2-2500-6956 | FAX: +886-2-2503-2869 |
| ROHM CO., LTD. | Oulu | TEL: + 358-8-5372930 | FAX: + $358-8-5372931$ | Kaohsiung | TEL: +886-7-237-0881 | FAX: +886-7-238-7332 |
|  | Barcelona | TEL: +34-9375-24320 | FAX: +34-9375-24410 | Singapore | TEL: +65-6332-2322 | FAX: +65-6332-5662 |
|  | Hungary | TEL: +36-1-4719338 | FAX: +36-1-4719339 | Philippines | TEL: +63-2-807-6872 | FAX: +63-2-809-1422 |
| 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan | Poland | TEL: +48-22-5757213 | FAX: +48-22-5757001 | Thailand | TEL: +66-2-254-4890 | FAX: +66-2-256-6334 |
| $\begin{aligned} & \text { 615-8585, Japan } \\ & \text { TEL: +81-75-311-2121 FAX:+81-75-315-0172 } \end{aligned}$ | Russia | TEL: +7-495-739-41-74 | FAX: +7-495-739-41-74 | Kuala Lumpur | TEL: +60-3-7958-8355 | FAX: +60-3-7958-8377 |
|  | Seoul | TEL: +82-2-8182-700 | FAX: +82-2-8182-715 | Penang | TEL: +60-4-2286453 | FAX: +60-4-2286452 |
| URL http:// www. rohm. com | Masan | TEL: +82-55-240-6234 | FAX: +82-55-240-6236 | Kyoto | TEL: +81-75-365-1218 | FAX: +81-75-365-1228 |
|  | Dalian | TEL: + 86-411-8230-8549 | FAX: +86-411-8230-8537 | Yokohama | TEL: +81-45-476-2290 | FAX: $+81-45-476-2295$ |
| KTC LSI Development Headquarters LSI Business Pomotion Group | Beijing | TEL: +86-10-8525-2483 | FAX: +86-10-8525-2489 |  | Catalog No.08T295A '08.8 ROHM © |  |

## Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.

[^0]
[^0]:    Copyright © 2008 ROHM CO.,LTD.
    ROHM CO., LTD. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
    TEL: +81-75-311-2121
    FAX : +81-75-315-0172

