

STRUCTURE	Silicon Monolithic Integrated Circuit	
PRODUCT SERIES	BTL driver for CD/CD-ROM	
TYPE	BA 5 9 8 3 FP	
PACKAGE OUTLINES	Figure 1 (Plastic Mold)	
POWER DISSIPATION	Figure 2	
BLOCK DIAGRAM	Figure 3	
APPLICATION	Figure 4	,
TEST CIRCUIT	Figure 5	

FUNCTIONS

• 4ch BTL Driver.

- Small surface mounting power package (HSOP 28).
- Wide dynamic range. (4V(typ.) at PreVcc=12V,PowVcc=5V,RL=8Ω)
- · Thermal shut down circuit built in.
- Separating Vcc into Pre and Power (Power divides into CH1/2 and CH3/4), can make better power efficiency, by low supply voltage drive.
- Mute operated individually CH4 and CH1/2/3.
- · All channels mute is stand by mode.
- Suitable for low operation voltage DSP by wide D-range pre opamp.

ABSOLUTE MAXIMUM RATINGS

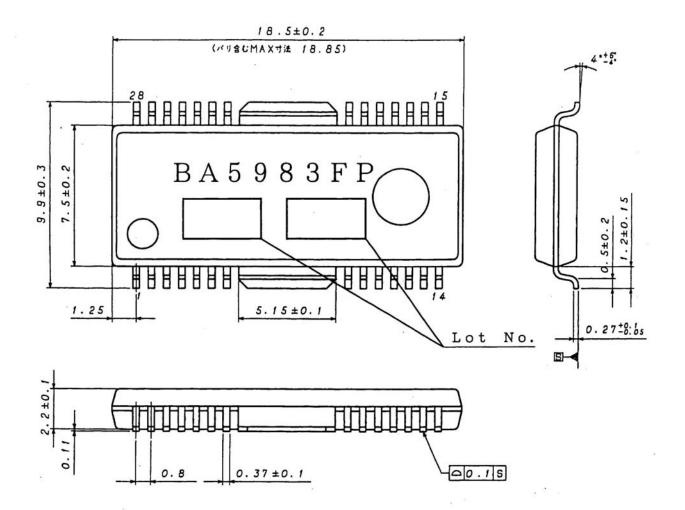
Parameter	Symbol	Limits	Unit
Supply voltage	PreVcc,PowVcc	13.5	V
Power dissipation	Pd	1.7 #1	W
Max output current	Iomax	1 # 2	Α
Operating temperature	Topr	-35~ 85	°C
Storage temperature	Tstg	-55~ 150	°C

#1 On less than 3% (percentage occupied by copper foi), 70x 70mm², t=1.6mm, glass epoxy mounting. Reduce power by 13.6mW for each degree above 25°C.
#2 The output current must not exceed the maximum Pd and ASO.

GUARANTEED OPERATING RANGES

Parameter	Symbol	Limits	Unit
Vcc for pre block	PreVcc	4.5~ 13.2	v
Vcc for power block	PowVcc	4.5~ PreVcc	v

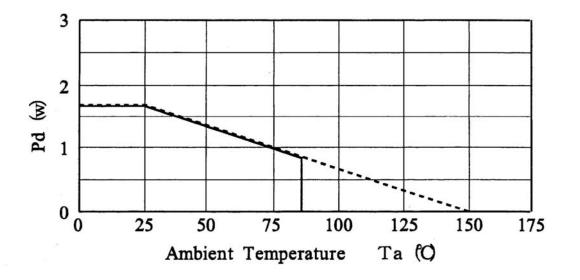
ELECTRICAL CHARACTERISTICS


(Unless otherwise noted, Ta=25°C, PreVcc=8V,PowVcc1=5V,PowVcc2=8V,Valas =1.65V,RL=8Ω)

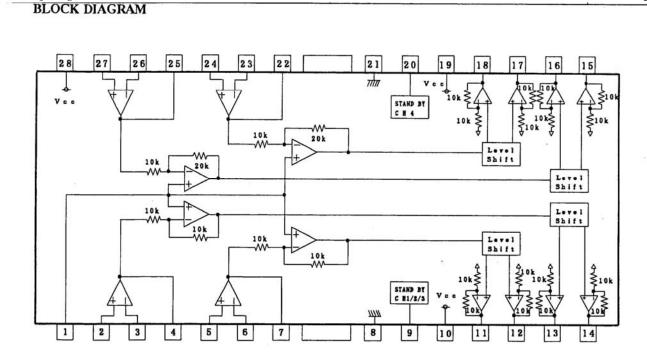
Parameter	Symbol	Min.	Тур.	Max.	UNIT	Conditions	Test circuit	
Quiescent current	IQ	-	20	32	mA	R L =00	Fig.5	
CH1-3 Standby Current	IQsti	-	6.2	13	mA	R L =00	Fig.5	
CH4 Standby Current	IQ _{6T2}	-	16	26	mA	R L =∞	Fig.5	
All Channel Standby Current	IQeti	_	-	1	mA	R L =00	Fig.5	
<driver block=""></driver>								
Output offset voltage	VOOF	-70	-	70	mV		Fig.5	
Maximum output voltage 1	Vom1	3.6	4.0	-	V	CH1,2 VIN=VBLAS ± 1.65V	Fig.5	
Maximum output voltage 2	Vom2	5.4	6.0	-	V	CH3,4 VIN=VBLAS ± 1.65V	Fig.5	
Closed loop voltage gain 1	Gvcı	10	12	14	d B	CH1,2 VIN=VBLAS ± 0.5V	Fig.5	
Closed loop voltage gain 2	Gvc2	16	18	20	d B	CH3,4 VIN=VBLAS ± 0.5V	Fig.5	
Slew Rate	SRDRV	-	2	-	V	Input pulse 100kHz,2Vp-p	Fig.5	
Standby on voltage	VSTON	-	-	0.5	V		Fig.5	
Standby off voltage	VSTOFF	2.0	-	-	V		Fig.5	
Bias drop mute on voltage	VBM	-	-	0.7	V		Fig.5	
Bias drop mute off voltage	VBMbff 1.3 - - V Fig.		Fig.5					
<pre amplifier="" operational=""></pre>								
Common mode input range	Vicm	0	-	6.8	v		Fig.5	
Input offset voltage	VOFOP	-6	0	6	mV		Fig.5	
Input bias current	Ibop	-	1	300	n A		Fig.5	
High level output voltage	VOHOP	7	7.8	1	V	VBIAS =4V	Fig.5	
Low level output voltage	VOLOP	-	-	0.3	v	VBLAS =4V	Fig.5	
Output sink current	Isı	1	1	-	mA	output to PreVcc by 500, Veias =4V	Fig.5	
Output source current	Iso .	300	500	-	μA	output to GND by 50 Å, Values = 4V	Fig.5	
Slew rate	SROP	-	2	-	$V/\mu s$	Input pulse 100kHz,2Vp-p	Fig.5	

O This product is not designed for protection against radioactive rays.

PACKAGE OUTLINES (mm)


(UNITimm)

四番: EX140-5001-1


POWER DISSIPATION / Electrical characteristic curves

Pd : power dissipation

* On less than 3% (percentage occupied by copper foi), $70 \times 70 \text{mm}^2$, t=1.6mm glass epoxy mounting.

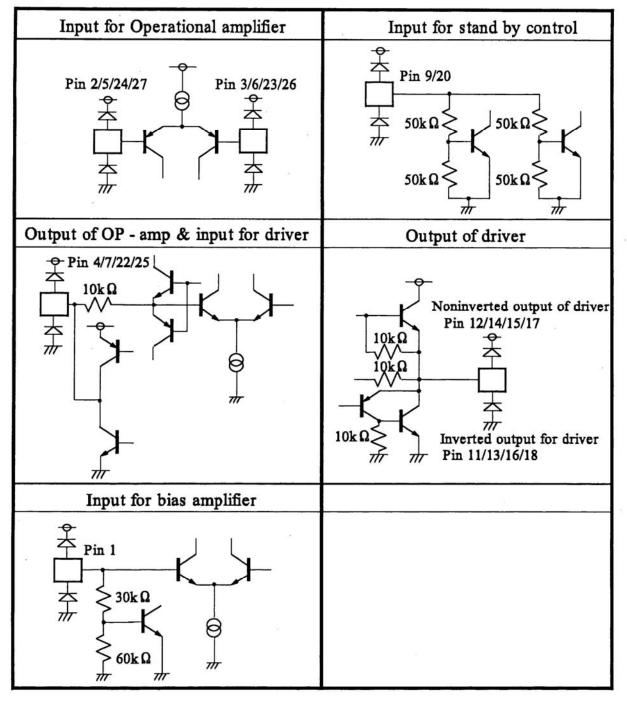
Figure 2

IDUCTOR

R

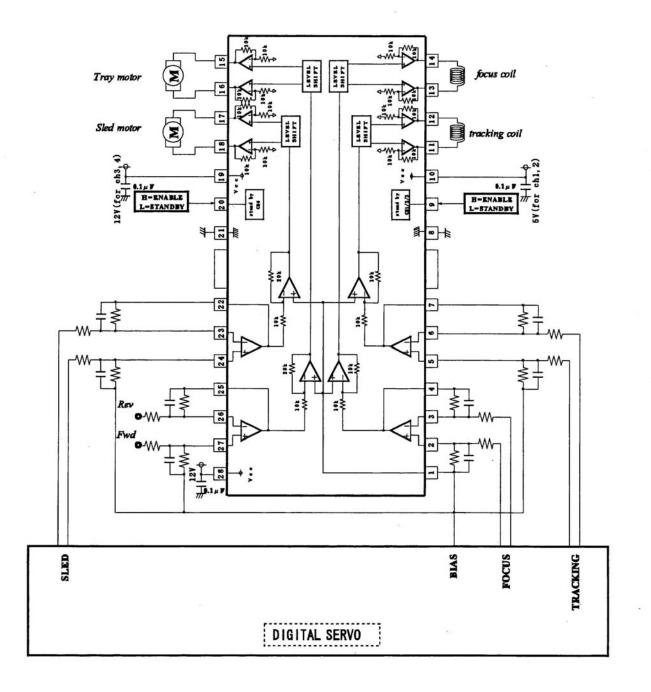
SE

Figure 3	•
----------	---


resistor unit : Ω

	Pin descr	iption			
NO	Symbol	Function	NO	Symbol	Function
1	BIAS IN	Input for Bias-amplifier	15	VO4(+)	Non inverted output of CH4
2	OPIN1(+)	Non inverting input for CH1 OP-AMP	16	VO4(-)	Inverted output of CH4
3	OPIN1(-)	Inverting input for CH1 OP-AMP	17	VO3(+)	Non inverted output of CH3
4	OPOUT1	Output for CH1 OP-AMP	18	VO3(-)	Inverted output of CH3
5	OPIN2(+)	Non inverting input for CH2 OP-AMP	19	PowVcc2	Vcc for CH3/4 power block
6	OPIN2(-)	Inverting input for CH2 OP-AMP	20	STBY2	Input for CH4 stand by control
7	OPOUT2	output for CH2 OP-AMP	21	GND	Substrate ground
8	GND	Substrate ground	22	OPOUT3	Output for CH3 OP-AMP
9	STBY1	Input for CH1/2/3 stand by control	23	OPIN3-)	Inverting input for CH3 OP-AMP
10	PowVcc1	Vcc for CH1/2 power block	24	OPIN3+)	Non inverting input for CH3 OP-AMP
11	VO2(-)	Inverted output of CH2	25	OPOUT4	Output for CH4 OP-AMP
12	VO2(+) -	Non inverted output of CH2	26	OPIN4(-)	Inverting input for CH4 OP-AMP
13	VO1(-)	Inverted output of CH1	27	OPIN4(+)	Non inverting input for CH4 OP-AMP
14	VO1(+)	Non inverted output of CH1	28	PreVcc	Vcc for pre block

notes) Symbol of + and - (output of drivers) means polarity to input pin. (For example if voltage of pin4 high,pin14 is high)


EQUIVALENT CIRCUIT OF TERMINALS

resistor unit : Ω

Application circuit

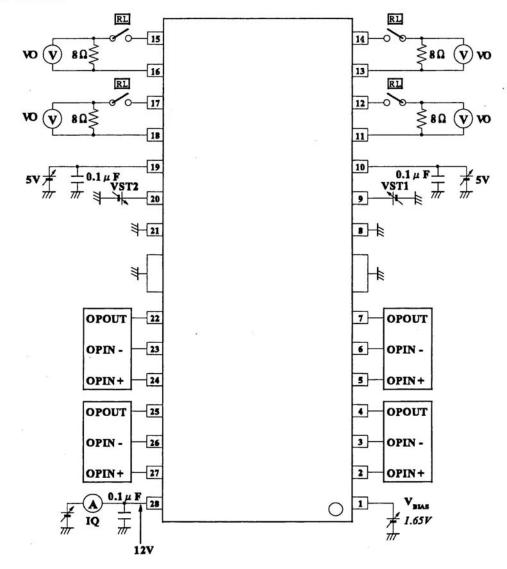

resistor unit : Ω

Figure 4

TEST CIRCUIT

.

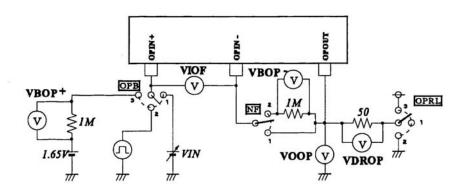


Figure 5

8/10

Table of measuring circuit switches

1) Quiescent current or standby (VIN=V_{BIAS}=1.65V, OPB \rightarrow 1, RL \rightarrow OFF, NF \rightarrow 1, OPRL \rightarrow 1)

	Input		0	
Symbol	VST1	VST2	Conditions	Measuring point
IQ	5V	5V		IQ
IQST1	0V	5V		IQ
IQST2	5V	0V		IQ
IQST3	0 V	0 V		IQ

2) Driver block (OPB \rightarrow 1,NF \rightarrow 1,OPRL \rightarrow 1, RL \rightarrow	ON)
--	-----

	SW		Input		$\frac{M}{M} \frac{M}{L} = \frac{1}{2}$		
Symbol	OPB	VIN	VST1	VST2	VBIAS	Condition	Measuring point
V001	1	1.65V	2.0V	2.0V	1.65V		VO (CH1,2)
V002	1	1.65V	2.0V	2.0V	1.65V		VO (CH3,4)
VOM1	1	± 1.65V	2.0V	2.0V	1.65V	VIN=0V or 3.3V	VO (CH1,2)
VOM2	1	± 1.65V	2.0V	2.0V	1.65V	VIN=0V or 3.3V	VO (CH3,4)
GVC1	1	± 0.5V	2.0V	2.0V	1.65V	VIN=1.15V or 2.15V	VO (CH1,2)
GVC2	1	± 0.5V	2.0V	2.0V	1.65V	VIN=1.15V or 2.15V	VO (CH3,4)
VSTON	1	3.0V	0.5V	0.5V	1.65V	Check output of driver is muted.	vo
VSTOFF	1	3.0V	2.0V	2.0V	1.65V	Check output of driver is active.	vo
VBMON	1	3.0V	0.5V	0.5V	0.5V	Check output of driver is muted.	vo
/BMOFF	1	3.0V	2.0V	2.0V	1.3V	Check output of driver is active.	vo
SRDRV	2	± 1V	2.0V	2.0V	1.65V	Input pulse 100kHz, *2V _P -	vo

3) Pre operational amplifier (VST1=VST2=2V,RL→ OFF)

		Switch	b	Inp	ut		
Symbol	OPB	NF	OPRL	VIN	VBIAS	Conditions	Measuring point
VOFOP	1	1	1	1.65V	1.65V		VIOF
VBOP	3	2	1	1.65V	1.65V		VBOP/1M Q
VOHOP	1	1	1	12V	6V	VBIAS=VCC/2	VOOP
VOLOP	1	1	1	0V	6V	VBIAS=VCC/2	VOOP
ISI	1	1	3	6V	6V	VBIAS=VCC/2	VDROP/50
ISO	1	1	2	6V	6V	VBIAS=VCC/2	VDROP/50
SROP	2	1	1	± 1.0V*	1.65V	Input pulse 100kHz, *2V _{PP}	VOOP

Notes on use

- Thermal shut down circuit is built in. In case IC chip temperature rises to 175°C(typ), thermal shut down circuit operates and muted the output current. Next time IC chip temperature falls below 150°C(typ), the driver blocks start.
- 2. Bias pin (pin1) should be pulled up more than 1.3V. In case bias pin voltage is under 0.7V(typ.), output current is muted.
- 3. In case supply voltage falls below 3.8V(typ.), output current is muted. Next time supply voltage rises to 4.0V (typ.), the driver blocks start.
- 4. Mute operation is caused by thermal shut down, decrease of bias pin voltage or decrease of supply voltage. when mute is done, output voltage becomes internal reference voltage about PowVcc/2.
- 5. In case of one of the standby terminals turn into or open, correspondence channel circuit include opample is muted.
- 6. Both of the standby terminals low or open, all circuits shutdown (sleep mode) and all output pins become high impedance.
 In addition to threshold is 1.4V(typ.).
- 7. Supply voltage of PreVcc should be equal to or higher than PowVcc.
- 8. Take care the external resister value of OPamp. OPamp source current supplies to internal resister ($10K \Omega$) as well as external resister.
- 9. Insert the by pass capacitor between Vcc pin and GND pin of IC as near as possible (approximately 0.1μ).
- 10. Keep the GND pin voltage the lowest of all pins.
- 1 1. Heat dissipation fins are attached to the GND on the inside of the package. Make sure to connect these to the external GND.

	Notes
	or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.
The content	specified herein is subject to change for improvement without notice.
"Products").	specified herein is for the purpose of introducing ROHM's products (hereinafte If you wish to use any such Product, please be sure to refer to the specifications e obtained from ROHM upon request.
illustrate the	application circuits, circuit constants and any other information contained hereir standard usage and operations of the Products. The peripheral conditions mus account when designing circuits for mass production.
However, sh	vas taken in ensuring the accuracy of the information specified in this document nould you incur any damage arising from any inaccuracy or misprint of such ROHM shall bear no responsibility for such damage.
examples or implicitly, an other parties	al information specified herein is intended only to show the typical functions of and f application circuits for the Products. ROHM does not grant you, explicitly o y license to use or exercise intellectual property or other rights held by ROHM and s. ROHM shall bear no responsibility whatsoever for any dispute arising from the technical information.
equipment c	es specified in this document are intended to be used with general-use electronic or devices (such as audio visual equipment, office-automation equipment, commu- ices, electronic appliances and amusement devices).
The Product	s specified in this document are not designed to be radiation tolerant.
	A always makes efforts to enhance the quality and reliability of its Products, a a fail or malfunction for a variety of reasons.
against the failure of any shall bear n	ure to implement in your equipment using the Products safety measures to guard possibility of physical injury, fire or any other damage caused in the event of the y Product, such as derating, redundancy, fire control and fail-safe designs. ROHM o responsibility whatsoever for your use of any Product outside of the prescribed t in accordance with the instruction manual.
system whic may result in instrument, controller or of the Produ	ts are not designed or manufactured to be used with any equipment, device or the requires an extremely high level of reliability the failure or malfunction of which in a direct threat to human life or create a risk of human injury (such as a medica transportation equipment, aerospace machinery, nuclear-reactor controller, fuel- other safety device). ROHM shall bear no responsibility in any way for use of any ucts for the above special purposes. If a Product is intended to be used for any I purpose, please contact a ROHM sales representative before purchasing.
be controlle	I to export or ship overseas any Product or technology specified herein that may d under the Foreign Exchange and the Foreign Trade Law, you will be required to nse or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/