Features

- Full-field Image Sensor 3500 x 2300 Pixels
- Pixel 10 µm x 10 µm Photo-MOS
- Image Zone: 35 mm x 23 mm
- Additional Full-frame Operating Mode: 2627 x 2300 pixels of 10 μm x 10 μm (3 zones)
- Frame Readout Through One, Two or Four Outputs
- Built-in Region of Interest (ROI) Selection
- Data Rates Up to 4 x 25 MHz (Compatibility with 10 Frames/Seconds)
- High Dynamic Range (Up to 3000), at Room Temperature and at 25 MHz Frequency
- Very Low Dark Current (MPP Mode)
- Bayer Standard Color Mosaic
- Flexibility and Performance Make Device Suitable for Digital Photography, Graphic Arts, Medical and Industrial Applications

Description

Atmel's AT71200M is a progressive scan sensor based on charge-coupled device (CCD) technology. It can be used in a wide range of applications thanks to operating mode flexibility, very high definition and high dynamic range.

The nominal photosensitive area is made up of 2300 x 3500 useful pixels and is split into four independent zones that are driven separately by four independent four-phase clocksets. Thus the sensor can be used in up to 12 main modes.

The large format and high definition make the device suitable for any application requiring precision and accuracy.

The Bayer standard RGB color mosaic has been specially designed for colorimetric applications and the three colors balanced for a 3800K standard illuminant.

Two serial registers and four independent output amplifiers offer a high-frequency functionality of up to 10 frames per second and a 12-bit dynamic range.

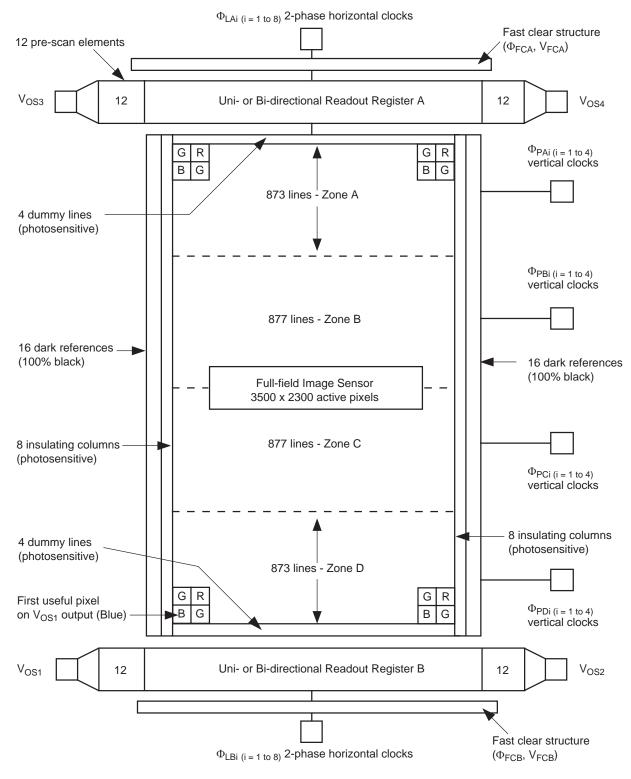
8M-pixel Color Image Sensor

AT71200M

Pinout

Figure 1. AT71200M Pinout - Top View

Table 1. AT71200M Pinout


Signal Name	Pin Number	Function
ΦLB[1:8]	F1, F2, G2, E1, J1, J2, H2, K1	B readout register clocks
ΦLA[1:8]	J19, J18, H18, K19, F19, F18, G18, E19	A readout register clocks
ΦS[1:4]	D1, L1, D19, L19	Summing clocks of the outputs 1, 2, 3 and 4
VGL[1:4]	C2, M2, C18, M18	Readout gate bias of the outputs 1, 2, 3 and 4
VGS[1:4]	C1, M1, C19, M19	Output gate bias of the outputs 1, 2, 3 and 4
VOS[1:4]	A2, P2, A18, P18	Output video signals 1, 2, 3 and 4
VDD[1:4]	A1, P1, A19, P19	Output amplifier drain supplies of the outputs 1, 2, 3 and 4
VS[1:4]	B1, N1, B19, N19	Output amplifier source biases of the outputs 1, 2, 3 and 4
ΦR[1:4]	D2, L2, D18, L18	Reset clocks of the outputs 1, 2, 3 and 4
VDR[1:4]	B2, N2, B18, N18	Reset bias of the outputs 1, 2, 3 and 4
ΦPA[1:4]	P14, N14, N15, P15	A image zone clocks
ΦPB[1:4]	A14, B14, B15, A15	B image zone clocks
ΦPC[1:4]	P6, P5, N5, N6	C image zone clocks
ΦPD[1:4]	A6, A5, B5, B6	D image zone clocks
ΦΤΑ, ΦΤΒ	B16, N4	Transfer gates from the image zone to the readout registers A and B respectively
VDEA, VDEB	A17, P3	Shield drains
VFCA, VFCB	P16, A4	Region of interest drains
ΦFCA, ΦFCB	A16, P4	Region of interest clocks
VSS	A3, B3, B4, E2, G1, H1, K2, M3, B17, E18, G19, H19, K18, N16, N17, P17	Substrate bias

Block Diagram

AT71200M

4

Architectural Overview

General Parameters

 Table 2.
 General Parameters

Parameters	Value
Pixel size	10 µm x 10 µm
Number of useful pixels on one line	2300
Number of useful lines	3500
Number of readout register	2
Number of outputs	4 ⁽¹⁾
MPP technology	yes
Region of interest structures on readout registers	yes
Built-in antiblooming	no
Pixel mode	4 phase
Readout register mode	2 phase

Note: 1. The design allows the full frame to be read through one, two or four outputs.

Vertical Characteristics –
Top to BottomAT71200M is made up of four zones, A, B, C and D. The configuration of each zone is
shown in Table 3.

Table 3. Vertical Characteristics

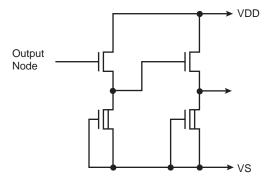
Zone	Configuration
<u>^</u>	4 dummy photosensitive lines
А	873 active lines, 100% photosensitive
В	877 active lines, 100% photosensitive
С	877 active lines, 100% photosensitive
	873 active lines, 100% photosensitive
D	4 dummy photosensitive lines

Horizontal Characteristics

Table 4 gives information on the characteristics seen by one output (V_{OS1} , V_{OS2} , V_{OS3} or V_{OS4}) in different readout modes.

Table 4. Horizontal Characteristics

	Readout Mode			
Characteristic	One Output	Two Outputs on Same Register		
Pre-scan elements	12	12		
Dark references	16	16		
Insulating elements	8	8		
Useful pixels	2300	1150		


Color Mosaic Architecture The color mosaic architecture corresponds to the Bayer standard represented by the following grid:

G	R	G	R
В	G	В	G
G	R	G	R
В	G	В	G

Output Amplifiers

The charge packets are clocked to the output nodes and the charges are converted to voltages. The potential at the output node is read through two stage source follower amplifiers. Refer to Figure 3.

Figure 3. On-chip Output Amplifier Structure

6 AT71200M

Absolute Maximum Ratings*

Storage Temperature Range55°C to +150°C
Operating Temperature Range40°C to +85°C
Thermal Cycling15°C/mn

*NOTICE: Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Electrical limits of applied signals are given in Table 5.

Shorting the video output to V_{SS} or V_{DD} , even temporarily, can permanently damage the output amplifier.

Due to MPP mode or negative voltages, image zone gates and region of interest gates do not include ESD protection. To avoid degradation, the devices (including pins and package) should be handled with a grounded bracelet and stored on conductive layer used for shipment.

Signal Name	Parameter Min		Max	Unit	
ΦLA[1:8]	Readout A Register Clocks	-0.3	+15	V	
ΦLB[1:8]	Readout B Register Clocks	-0.3	+15	V	
ΦS[1:4]	Summing Gate	-0.3	+15	V	
VGL[1:4]	Readout Gate	-0.3	+15	V	
VGS[1:4]	Output Gate	-0.3	+15	V	
VOS[1:4]	Output Video Signal	-0.3	+15	V	
VDD[1:4]	Amplifier Drain Supply	-0.3	+15	V	
VS[1:4]	Source Bias	-0.3	+15	V	
ΦR[1:4]	Reset Gate	-0.3	+15	V	
VDR[1:4]	Reset Bias	-0.3	+15	V	
ΦPA[1:4]	Image Zone A Clocks	-15 and $\Phi PA[other]$ - 20	+15 and $\Phi PA[other] + 20$	V	
ΦPB[1:4]	Image Zone B Clocks	-15 and $\Phi PB[other]$ - 20	+15 and $\Phi PB[other] + 20$	V	
ΦPC[1:4]	Image Zone C Clocks	-15 and $\Phi PC[other]$ - 20	+15 and PC[1:4] + 20	V	
ΦPD[1:4]	Image Zone D Clocks	-15 and Φ PD[other] - 20	+15 and Φ PD[other] + 20	V	
ΦΤΑ	Transfer Gates Zone A	ΦLA - 15 and ΦPA[4] - 15	+15 and $\Phi PA[4] + 15$	V	
ΦΤΒ	Transfer Gates Zone B	ΦLB - 15 and ΦPD[4] - 15	+15 and ΦPD[4] + 15	V	
VDEA, VDEB	Shield Drains	-0.3	+15	V	
VFCA, VFCB	Region Of Interest Drains	-0.3	+15	V	
ΦFCA	Region Of Interest Gates Zone A	ΦLA[1:8] - 15	+15	V	
ΦFCB	Region Of Interest Gates Zone B	ΦLB[1:8] - 15	+15	V	
VSS	Substrate Bias		0	V	

 Table 5. Maximum Applied Voltages⁽¹⁾

Note: 1. If not specified, all voltages are applied with respect to the substrate VSS.

DC Characteristics

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Typical Currents
$V_{S}^{(1)}$	Source bias	0	0	1	V	< 12 mA
$V_{DD}^{(1)}$	Amplifier drain supply	14.5	15	15.5	V	< 12 mA
V _{SS}	Substrate bias	0	0		V	_
V _{GS}	Output gate	7	7.5	8	V	< 1 µA
V _{DR}	Reset diode	13.5	14	14.5	V	< 5 µA
V _{GL}	Readout gate	3	3.5	4	V	< 1 µA
V _{DE}	Shield drain	3	5	6	V	< 1 µA
V _{FC}	Regions of interest drains	12.5	13	13.5	V	< 5 µA

Note: 1. If corresponds to inactive output, may be stated to [3V, 7V] in order to reduce power consumption.

Drive Clock Characteristics

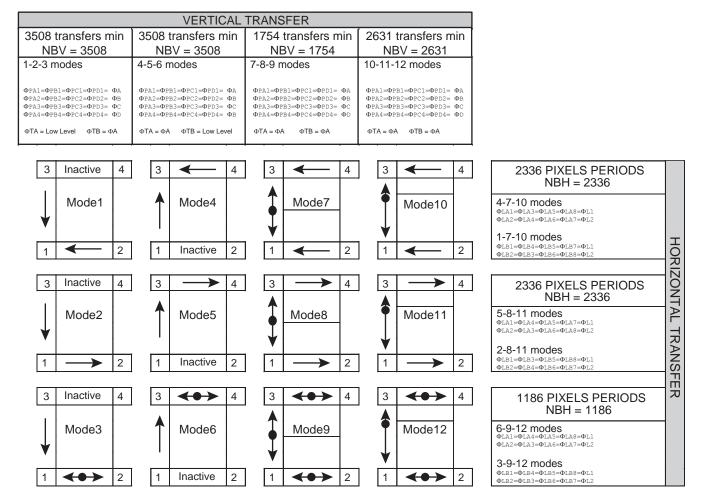
Symbol	Parameter	State	Minimum	Typical	Maximum	Unit	Remarks
		Low	-10	-9	-8	V	For each A, B, C and D
$\Phi_{Pij}^{(1)(2)}$	Image Zone Clocks	High	+2.5	+3	+3.5	V	zone, the typical capacitances to drive are C _{Pij} approx. 12 nF
		Low	0	0	+0.5	V	After the eight clocks have been grouped together to form the two clocks Φ_{L1} and Φ_{L2} , the typical
$\Phi_{Lmn}^{(3)(4)}$	Readout Register Clocks	High	+7.5	+8	+9	V	capacitances to drive for each register A or B are $C_{\Phi L1}$ approx. 310 pF and $C_{\Phi L2}$ approx. 310 pF
- (2)		Low	0	0	+0.5	V	For each Φ_{Sj} , the typical
$\Phi_{Sj}^{(2)}$	Summing Gates	High	+7.5	+8	+9	V	capacitance to drive is $C_{\Phi Sj}$ approx. 40 pF
(0)		Low	+1	+2	+3	V	For each Φ_{Rj} , the typical
$\Phi_{Rj}^{(2)}$	Reset Gates	High	+8	+9	+10	V	capacitance to drive is $C_{\Phi Rj}$ approx. 40 pF
(2)		Low	-6	-5	-4	V	For each Φ_{Tm} , the typical
$\Phi_{Tm}^{(3)}$	Transfer Gates	High	+2.5	+3	+3.5	V	capacitance to drive is $C_{\Phi Tm}$ approx. 150 pF
		FC inactive	-3.5	-2.5	-2	V	For each $\Phi_{\rm FCm}$, the typical capacitance to drive is
$\Phi_{FCm}^{(3)}$	Region of Interest Gates	Low	0	0	+0.5	V	$C_{\Phi FCm}$ approx. 50 pF
		High	+3.5	+4	+4.5	V	

Notes: 1. i = A, B, C or D

2. j = 1, 2, 3 or 4

3. m = A or B

 $4. \ n=1,\,2,\,3,\,4,\,5,\,6,\,7 \text{ or } 8$



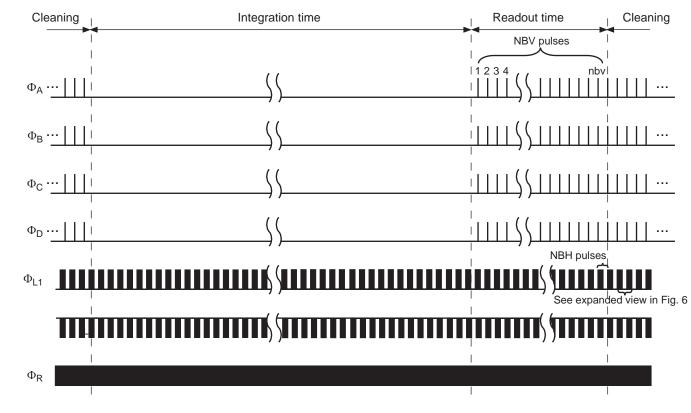
Operating Modes

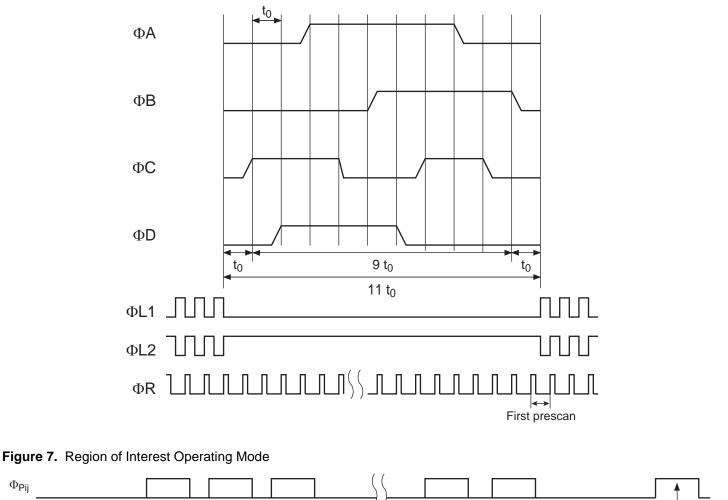
For the required readout mode, the vertical and horizontal clocks must be tied together externally as shown in Figure 4.

Figure 4. Operating Modes

Note: Symbols ΦA , ΦB , ΦC and ΦD correspond to the clocks described in the full-frame mode timing diagrams. Abbreviations NBV and NBH correspond respectively to the vertical and horizontal number of transfers. The unused horizontal clocks (ΦL , ΦR , ΦS) must be stated to higher level of ΦL .

Timing Diagrams




Figure 5. Full-frame Mode Timing Diagram

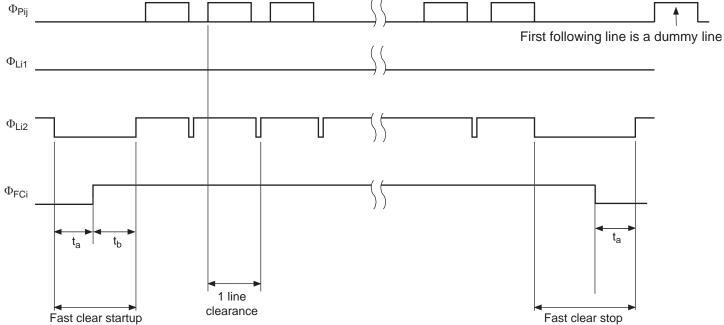

Note: ΦA, ΦB, ΦC, ΦD, ΦL1 and ΦL2 (command phases) and NBV and NBH (number of vertical transfers and number of horizontal transfers respectively) are defined in Figure 4.

Figure 6. Line Timing Diagram

Note: Typical values of $t_a,\,t_b,\,t_c,\,t_a \geq 150$ ns, $t_b \geq 150$ ns, $t_c \geq 150$ ns

12 AT71200M

Phase	Time
Φ_{P1}	500 ns
Φ_{P2}	500 ns
Φ_{P3}	500 ns
Φ_{P4}	500 ns
$\Phi_{\sf FC}$	50 ns
V _{FC}	50 ns
Φ_{L1}	10 ns
Φ_{L2}	10 ns
$\Phi_{\sf S}$	10 ns
Φ_{R}	4 ns

Table 6. Typical TR and TF (Time Rise, Time Fall) for Phases

Frame Rate Characteristics

Table 7. Frame Rate Characteristics

	One Output	Two Outputs	Four Outputs
	(Modes 1, 2, 3, 4)	(Modes 13, 14)	(Mode 15)
Without binning	Typical 2.8 fps	Typical 5.1 fps	Typical 10.2 fps

Note: Table 7 gives typical values for full-frame mode where:

- Horizontal pixel frequency = 25 MHz
- Vertical transfer time $T_V = 11 \ x \ t_0 = 10 \ \mu s$ (delay times before and after line transfer $t_1 = t_2 = t_0$)
- Integration time = 0s:

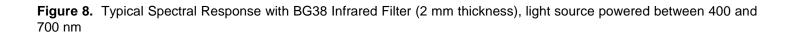
Table 8. Electrical and Miscellaneous Characteristics

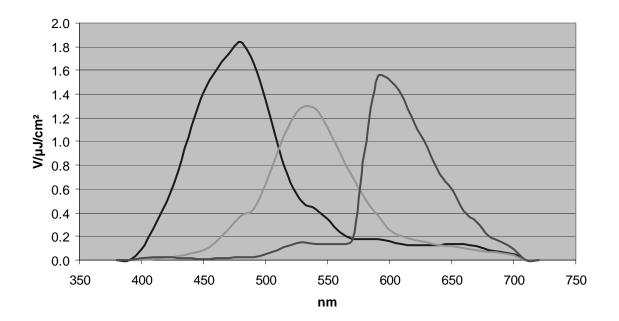
Symbol	Parameters	Minimum	Typical	Maximum	Unit
V_{REF}	DC output level		10		V
Z _{OUT}	Output impedance		230		Ohms
$I_{DD}^{(1)}$	Output amplifier supply current		10	15	mA
C_{VF}	Charge-to-voltage conversion factor	7.3	7.6	8.0	μV/e-
T _V	Vertical transfer time	5	10		μs
FH	Maximum Readout pixel frequency	25	_	_	MHz

Note: 1. For each output.

Electrooptical Data

Table 9. Performance Data⁽¹⁾


Symbol	Parameters	Minimum	Typical	Maximum	Unit
V_{SAT}	Pixel saturation output voltage	500	600	700	mV
R-Blue ⁽²⁾	Responsivity blue	0.45	0.60		V/(µJ/cm ²)
R-Green ⁽²⁾	Responsivity green	0.45	0.60		V/(µJ/cm ²)
R-Red ⁽²⁾	Responsivity red	0.70	0.92		V/(µJ/cm ²)
R-Blue ⁽²⁾	Responsivity blue		0.19		V/(lux.s)
R-Green ⁽²⁾	Responsivity green		0.19		V/(lux.s)
R-Red ⁽²⁾	Responsivity red		0.25		V/(lux.s)
PRNU	Photo response non uniformity, σ		1	6	% VOS
DSI1	Image zone MPP mode		0.3		mV/s
DSI2	Image zone non-MPP mode		60		mV/s
DSR	Readout register (non-MPP mode)		150		mV/s
VDS ⁽³⁾	Average dark signal		7	20	mV
DSNU ⁽³⁾	Dark signal non-uniformity, σ		3.5	5.5	mV
V _N	Temporal RMS noise in darkness at BW = 150 MHz		270		μV
DR	Dynamic range		67		dB
	Linearity		1		%
MTF ⁽⁴⁾	Modulated transfer function		86		%
VCTE ⁽⁵⁾	Vertical charge transfer efficiency (per stage)	0.99995	0.999998		_
HCTE ⁽⁵⁾	Horizontal charge transfer efficiency (per stage)	0.99995	0.999998		_


Notes: 1. General measurement conditions:

 $T_{C} = 25^{\circ}C \text{ (chip temperature)}$ Vertical transfer time TV = 10 ms Readout pixel frequency F_H = 5 MHz Readout through 4 outputs and standard mode 9 (see figure 4) 3200K Halogen lamp with 2 mm BG38 filter at f/11 aperture 2. Blue, Green, Red channels

The responsivity are well balanced for 3800K source

- 3. Integration time Ti = 10s in darkness
- 4. Green
- 5. Output voltage > 10% VSAT

Image Grade

Table 10 gives results of image grade testing.

Table 10. Image Grade⁽¹⁾

	Blemishes		Cluster 1		Cluster 2		Column	
Grade	Total	D min ⁽²⁾	Total	D min ⁽²⁾	Total	D min ⁽²⁾	Total	D min ⁽²⁾
E	≤ 500	3	≤ 30	50	≤ 6	100	≤ 4	150
Н	≤ 300	3	≤ 10	50	0		0	

Notes: 1. Testing has been carried out under the following conditions: Operating temperature: 25°C (unless otherwise specified) Illumination conditions: 3200K Halogen lamp with BG38 Infrared filter and f/11 aperture

Integration time = 10s in darkness

Test under illumination at 50% of saturation level

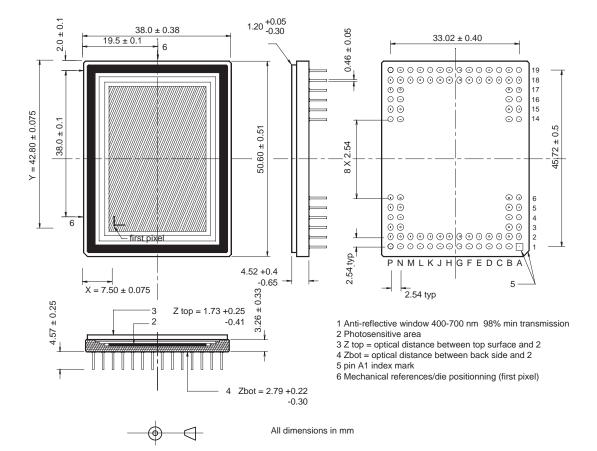
Standard mode, $T_V = 10 \ \mu s$, FH = 5 MHz

2. D min: Minimum number of pixels separating defects in any direction. All occurences are non-contiguous.

Definitions

Defect Sizes

Туре	Description
Blemish	1 x 1 defect
Cluster	Blemish grouping of not more than a given number of adjacent defects: 1 x 1 < cluster 1 size \le 2 x 2 2 x 2 < cluster 2 size \le 5 x 5
Column	One-pixel-wide column with more than seven contiguous defective pixels

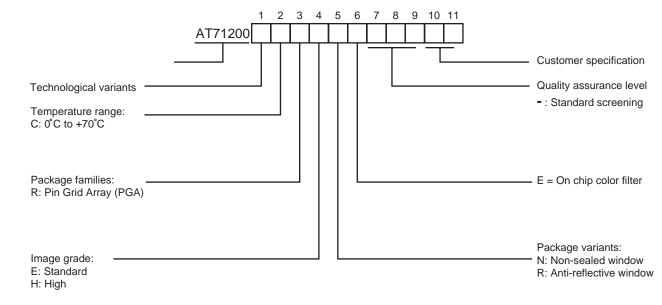

Defects in Darkness

Туре	Description
Blemish/Cluster	Pixel signal deviation of more than 200 mV from the average output signal
Column	Column signal deviation of more than 20 mV from the average output signal

Defects under Illumination

Туре	Description
Blemish/Cluster	Pixel deviation of more than +20% or -30% from the average output signal
Column	Column deviation of more than 10% from the average output signal

Package Drawing



Ordering Information

Figure 9. Ordering Code Key

The following part numbers are available:

- AT71200MCRERE: version grade E
- AT71200MCRHRE: version grade H

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail literature@atmel.com

Web Site http://www.atmel.com

© Atmel Corporation 2003.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL[®] is the registered trademark of Atmel.

Other terms and product names may be the trademarks of others.

