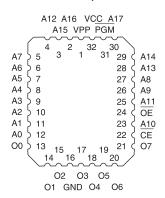
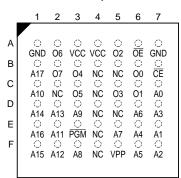
Features

- Fast Read Access Time 90 ns
- Dual Voltage Range Operation
 - Unregulated Battery Power Supply Range, 2.7V to 3.6V or Standard 5V ± 10% Supply Range
- Compatible with JEDEC Standard AT27C020
- Low Power CMOS Operation
 - 20 μA max. (less than 1 μA typical) Standby for V_{CC} = 3.6V
 - 29 mW max. Active at 5 MHz for V_{CC} = 3.6V
- Wide Selection of JEDEC Standard Packages
 - 32-Lead PLCC
 - 32-Lead TSOP (8 x 20mm)
 - 32-Lead VSOP (8 x 14mm)
 - 42-Ball CBGA (8 x 8mm)
- High Reliability CMOS Technology
 - 2,000V ESD Protection
 - 200 mA Latchup Immunity
- Rapid[™] Programming Algorithm 100 µs/byte (typical)
- CMOS and TTL Compatible Inputs and Outputs
 - JEDEC Standard for LVTTL and LVBO
- Integrated Product Identification Code
- Commercial and Industrial Temperature Ranges

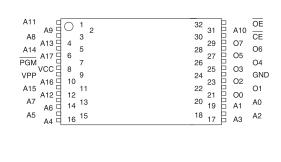
Description


The AT27BV020 is a high-performance, low-power, low-voltage 2,097,152-bit one-time programmable read only memory (OTP EPROM) organized as 256K by 8 bits. It requires only one supply in the range of 2.7 to 3.6V in normal read mode operation, making it ideal for fast, portable systems using either regulated or unregulated battery power.

(continued)


Pin Configurations

Pin Name	Function
A0 - A17	Address
O0 - O7	Outputs
CE	Chip Enable
ŌĒ	Output Enable
PGM	Program Strobe


PLCC, Top View

CBGA Top View

TSOP, VSOP Top View Type 1

2-Megabit (256K x 8) Unregulated Battery-Voltage[™] High Speed OTP EPROM

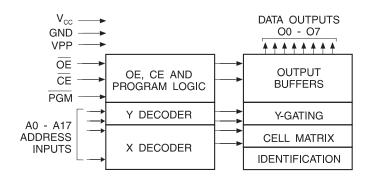
AT27BV020

0902A-A-10/97

Atmel's innovative design techniques provide fast speeds that rival 5V parts while keeping the low power consumption of a 3V supply. At $V_{CC}=2.7V,\,$ any byte can be accessed in less than 90 ns. With a typical power dissipation of only 18 mW at 5 MHz and $V_{CC}=3V,\,$ the AT27BV020 consumes less than one fifth the power of a standard 5V EPROM. Standby mode supply current is typically less than 1 μA at 3V. The AT27BV020 simplifies system design and stretches battery lifetime even further by eliminating the need for power supply regulation

The AT27BV020 is available in industry standard JEDEC approved one-time programmable (OTP) plastic PLCC, TSOP and VSOP packages, as well as a 42-ball, 1 mm pitch, plastic chip-scale Ball Grid Array package (CBGA). All devices feature two-line control ($\overline{\text{CE}}$, $\overline{\text{OE}}$) to give designers the flexibility to prevent bus contention.

The AT27BV020 operating with V $_{CC}$ at 3.0V produces TTL level outputs that are compatible with standard TTL logic devices operating at V $_{CC}$ = 5.0V. At V $_{CC}$ = 2.7V, the part is compatible with JEDEC approved low voltage battery operation (LVBO) interface specifications. The device is also capable of standard 5-volt operation making it ideally suited for dual supply range systems or card products that are pluggable in both 3-volt and 5-volt hosts.


Atmel's AT27BV020 has additional features to ensure high quality and efficient production use. The Rapid[™] Program-

ming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100 $\mu s/byte$. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages. The AT27BV020 programs exactly the same way as a standard 5V AT27C020 and uses the same programming equipment.

System Considerations

Switching between active and standby conditions via the Chip Enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed data sheet limits, resulting in device non-conformance. At a minimum, a 0.1 μF high frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the V_{CC} and Ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 μF bulk electrolytic capacitor should be utilized, again connected between the V_{CC} and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias40°C to +85°C
Storage Temperature65°C to +125°C
Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾
Voltage on A9 with Respect to Ground2.0V to +14.0V ⁽¹⁾
V _{PP} Supply Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

Minimum voltage is -0.6V DC which may undershoot to -2.0V for pulses of less than 20 ns.Maximum output pin voltage is $V_{\rm CC}$ + 0.75V DC which may be exceeded if certain precautions are observed (consult application notes) and which may overshoot to +7.0V for pulses of less than 20 ns

Operating Modes

Mode / Pin	CE	ŌĒ	PGM	Ai	V _{PP}	V _{cc}	Outputs
Read ⁽²⁾	V _{IL}	V _{IL}	X ⁽¹⁾	Ai	Χ	V _{CC} ⁽²⁾	D _{OUT}
Output Disable ⁽²⁾	Х	V _{IH}	Χ	X	Χ	V _{CC} ⁽²⁾	High Z
Standby ⁽²⁾	V _{IH}	Х	Χ	X	Χ	V _{CC} ⁽²⁾	High Z
Rapid Program ⁽³⁾	V_{IL}	V _{IH}	V_{IL}	Ai	V_{PP}	Vcc ⁽³⁾	D _{IN}
PGM Verify ⁽³⁾	V_{IL}	V _{IL}	V_{IH}	Ai	V_{PP}	V _{CC} ⁽³⁾	D _{OUT}
PGM Inhibit ⁽³⁾	V _{IH}	Х	Χ	X	V_{PP}	V _{CC} ⁽³⁾	High Z
Product Identification ⁽³⁾⁽⁵⁾	V _{IL}	V _{IL}	Х	$A9 = V_H^{(4)}$ $A0 = V_{IH} \text{ or } V_{IL}$ $A1 - A17 = V_{IL}$	Х	V _{CC} ⁽³⁾	Identification Code

Notes: 1. X Can be V_{IL} or V_{IH} .

- 2. Read, output disable, and standby modes require, $2.7V \le V_{CC} \le 3.6V$, or $4.5V \le V_{CC} \le 5.5V$.
- 3. Refer to Programming Characteristics. Programming modes requires $V_{CC} = 6.5V$.
- 4. $V_H = 12.0 \pm 0.5 V$.
- 5. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}), except A9 which is set to V_H and A0 which is toggled low (V_{II}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

DC and AC Operating Conditions for Read Operation

	AT27BV020				
		-90	-12	-15	
Operating Temperature (Cose)	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	
Operating Temperature (Case)	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	
V. Buran Caral		2.7V to 3.6V	2.7V to 3.6V	2.7V to 3.6V	
V _{CC} Power Supply		5V ± 10%	5V ± 10%	5V ± 10%	

= Preliminary Information

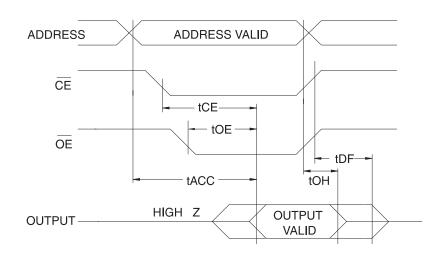
DC and Operating Characteristics for Read Operation

Symbol	Parameter	Condition	Min	Max	Units
V _{CC} = 2.7V	to 3.6V				
I _{LI}	Input Load Current	V _{IN} = 0V to V _{CC}		±1	μΑ
I _{LO}	Output Leakage Current	$V_{OUT} = 0V \text{ to } V_{CC}$		±5	μΑ
I _{PP1} ⁽²⁾	V _{PP} ⁽¹⁾ Read/Standby Current	$V_{PP} = V_{CC}$		10	μΑ
,	V (1) Stead has Course	I_{SB1} (CMOS), $\overline{CE} = V_{CC} \pm 0.3V$		20	μΑ
I_{SB}	V _{CC} ⁽¹⁾ Standby Current	I_{SB2} (TTL), \overline{CE} = 2.0 to V_{CC} + 0.5V		100	μΑ
I _{cc}	V _{CC} Active Current	$f = 5 \text{ MHz}, I_{OUT} = 0 \text{ mA}, \overline{CE} = V_{IL}, V_{CC} = 3.6V$		8	mA
	Land Land Millians	V _{CC} = 3.0 to 3.6V	-0.6	0.8	V
V_{IL}	Input Low Voltage	V _{CC} = 2.7 to 3.6V	-0.6	0.2 x V _{CC}	V
.,		V _{CC} = 3.0 to 3.6V	2.0	V _{CC} + 0.5	V
V_{IH}	Input High Voltage	V _{CC} = 2.7 to 3.6V	0.7 x V _{CC}	V _{CC} + 0.5	V
		I _{OL} = 2.0 mA		0.4	V
V_{OL}	Output Low Voltage	I _{OL} = 100 μA		0.2	V
		I _{OL} = 20 μA		0.1	V
		I _{OH} = -2.0 mA	2.4		V
V_{OH}	Output High Voltage	I _{OH} = -100 μA	V _{CC} - 0.2		V
		I _{OH} = -20 μA	V _{CC} - 0.1		V
V _{CC} = 4.5V	to 5.5V	·			
I _{LI}	Input Load Current	V _{IN} = 0V to V _{CC}		±1	μΑ
I _{LO}	Output Leakage Current	V _{OUT} = 0V to V _{CC}		±5	μΑ
I _{PP1} ⁽²⁾	V _{PP} ⁽¹⁾ Read/Standby Current	$V_{PP} = V_{CC}$		10	μΑ
	(1) 0, 11 0	I_{SB1} (CMOS), $\overline{CE} = V_{CC} \pm 0.3V$		100	μΑ
I _{SB}	V _{CC} ⁽¹⁾ Standby Current	I_{SB2} (TTL), \overline{CE} = 2.0 to V_{CC} + 0.5V		1	mA
I _{cc}	V _{CC} Active Current	$f = 5 \text{ MHz}, I_{OUT} = 0 \text{ mA}, \overline{CE} = V_{IL}$		25	mA
V _{IL}	Input Low Voltage		-0.6	0.8	V
V _{IH}	Input High Voltage		2.0	V _{CC} + 0.5	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		V
	The state of the s	1	1	1	

Notes: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously with or after V_{PP}

^{2.} V_{PP} may be connected directly to V_{CC} , expect during programming. The supply current would then be the sum of I_{CC} and I_{PP}

AC Characteristics for Read Operation


 $(V_{CC} = 2.7V \text{ to } 3.6V \text{ and } 4.5V \text{ to } 5.5V)$

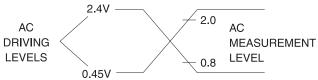
			AT27BV020						
			-9	90	-12		-15		
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Units
t _{ACC} ⁽³⁾	Address to Output Delay	$\overline{CE} = \overline{OE} = V_{IL}$		90		120		150	ns
t _{CE} ⁽²⁾	CE to Output Delay	OE = V _{IL}		90		120		150	ns
t _{OE} ⁽²⁾⁽³⁾	OE to Output Delay	CE = V _{IL}		50		50		60	ns
t _{DF} ⁽⁴⁾⁽⁵⁾	OE or CE High to Output Float, whichever occurred first			40		40		50	ns
t _{OH}	Output Hold from Address, $\overline{\text{CE}}$ or $\overline{\text{OE}}$, whichever occurred first		0		0		0		ns

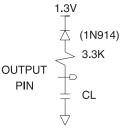
Note: 2,3,4,5. - see AC Waveforms for Read Operation

= Preliminary Information

AC Waveforms for Read Operation(1)

Notes: 1. Timing measurement references are 0.8V and 2.0V. Input AC drive levels are 0.45V and 2.4V, unless otherwise specified.


- 2. $\overline{\text{OE}}$ may be delayed up to t_{CE} t_{OE} after the falling edge of $\overline{\text{CE}}$ without impact on t_{CE} .
- 3. $\overline{\text{OE}}$ may be delayed up to t_{ACC} t_{OE} after the address is valid without impact on t_{ACC} .
- 4. This parameter is only sampled and is not 100% tested.
- 5. Output float is defined as the point when data is no longer driven.

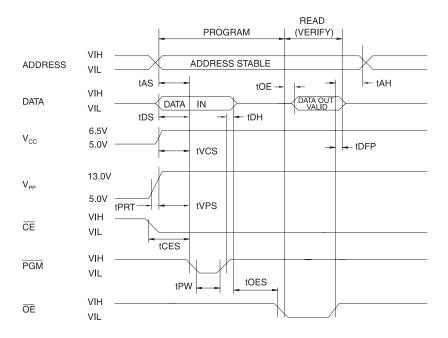

Input Test Waveform and Measurement Level

aveionii and weasurement Level Outp

 t_R , t_F < 20 ns (10% to 90%)

Output Test Load

Note: CL = 100 pF including jig capacitance.


Pin Capacitance⁽¹⁾

 $(f = 1 \text{ MHz}, T = 25^{\circ}\text{C})$

	Тур	Max	Units	Conditions
C _{IN}	4	8	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	V _{OUT} = 0V

Note: Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms⁽¹⁾

Notes: 1. The Input Timing Reference is 0.8V for $V_{\rm IL}$ and 2.0V for $V_{\rm IH}$.

- 2. t_{OE} and t_{DFP} are characteristics of the device but must be accommodated by the programmer.
- 3. When programming the AT27BV020 a 0.1 μ F capacitor is required across V_{PP} and ground to suppress spurious voltage transients.

DC Programming Characteristics

 $T_A = 25 \pm 5$ °C, $V_{CC} = 6.5 \pm 0.25$ V, $V_{PP} = 13.0 \pm 0.25$ V

			Li	Limits	
Symbol	Parameter	Test Conditions	Min	Max	Units
I _{LI}	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		±10	μΑ
V _{IL}	Input Low Level		-0.6	0.8	V
V _{IH}	Input High Level		2.0	V _{CC} + 0.5	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		V
I _{CC2}	V _{CC} Supply Current (Program and Verify)			40	mA
I _{PP2}	V _{PP} Supply Current	$\overline{CE} = \overline{PGM} = V_{IL}$		20	mA
V _{ID}	A9 Product Identification Voltage		11.5	12.5	V

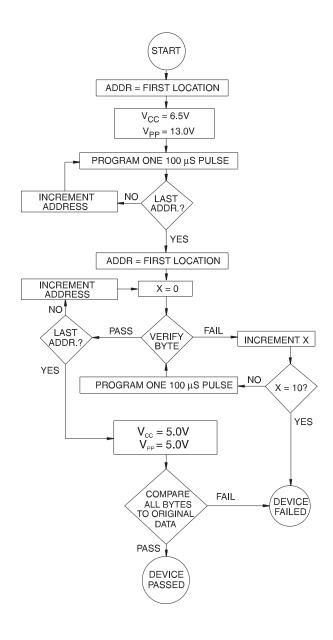
AC Programming Characteristics

 $T_A = 25 \pm 5^{\circ}C$, $V_{CC} = 6.5 \pm 0.25V$, $V_{PP} = 13.0 \pm 0.25V$

	Test Conditions ⁽¹⁾		Lir		
Symbol	Parameter	AC Conditions of Test	Min	Max	Units
t _{AS}	Address Setup Time		2		μѕ
t _{CES}	CE Setup Time		2		μs
t _{OES}	OE Setup Time	Input Rise and Fall Times (10% to 90%) 20ns	2		μs
t _{DS}	Data Setup Time	(10% to 90%) 20118	2		μѕ
t _{AH}	Address Hold Time	Input Pulse Levels	0		μѕ
t _{DH}	Data Hold Time	0.45V to 2.4V	2		μs
t _{DFP}	OE High to Output Float Delay(3)	Input Timing Reference Level	0	130	ns
t _{VPS}	V _{PP} Setup Time	0.8V to 2.0V	2		μѕ
t _{VCS}	V _{CC} Setup Time		2		μs
t _{PW}	PGM Program Pulse Width ⁽²⁾	Output Timing Reference Level 0.8V to 2.0V	95	105	μs
t _{OE}	Data Valid from OE	5.57 10 2.07		150	ns
t _{PRT}	V _{PP} Pulse Rise Time During Programming		50		ns

- Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}
 - 2. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven —see timing diagram.
 - 3. Program Pulse width tolerance is 100 μ sec \pm 5%.

Atmel's 27BV020 Integrated Product Identification Code⁽¹⁾


					Pins					Hex
Codes	A0	07	06	O5	04	О3	02	01	00	Data
Manufacturer	0	0	0	0	1	1	1	1	0	1E
Device Type	1	1	0	0	0	0	1	1	0	86

The AT27BV020 has the same Product Identification Code as the AT27C020. Both are programming compatible. Note:

Rapid Programming Algorithm

A 100 μ s \overline{PGM} pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and V_{PP} is raised to 13.0V. Each address is first programmed with one 100 μ s \overline{PGM} pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100 μ s pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses

have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. V_{PP} is then lowered to 5.0V and V_{CC} to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

Ordering Information

		(mA) = 3.6V			
t _{ACC} (ns)	Active	Standby	Ordering Code	Package	Operation Range
90	8	0.02	AT27BV020-90CC	42C	Commercial
			AT27BV020-90JC	32J	(0°C to 70°C)
			AT27BV020-90TC	32T	
			AT27BV020-90VC	32V	
	8	0.02	AT27BV020-90CI	42C	Industrial
			AT27BV020-90JI	32J	(-40°C to 85°C)
			AT27BV020-90TI	32T	
			AT27BV020-90VI	32V	
120	8	0.02	AT27BV020-12CC	42C	Commercial
			AT27BV020-12JC	32J	(0°C to 70°C)
			AT27BV020-12TC	32T	
			AT27BV020-12VC	32V	
	8	0.02	AT27BV020-12CI	42C	Industrial
			AT27BV020-12JI	32J	(-40°C to 85°C)
			AT27BV020-12TI	32T	
			AT27BV020-12VI	32V	
150	8	0.02	AT27BV020-15CC	42C	Commercial
			AT27BV020-15JC	32J	(0°C to 70°C)
			AT27BV020-15TC	32T	
			AT27BV020-15VC	32V	
	8	0.02	AT27BV020-15CI	42C	Industrial
			AT27BV020-15JI	32J	(-40°C to 85°C)
			AT27BV020-15TI	32T	
			AT27BV020-15VI	32V	

= Preliminary Information

	Package Type
42C	42-Ball, Plastic Chip-Scale Ball Grid Array (CBGA) (8 x 8mm)
32J	32-Lead, Plastic J-Leaded Chip Carrier (PLCC)
32T	32-Lead, Plastic Thin Small Outline Package (TSOP) (8 x 20mm)
32V	32-Lead, Plastic Thin Small Outline Package (VSOP) (8 x 14mm)