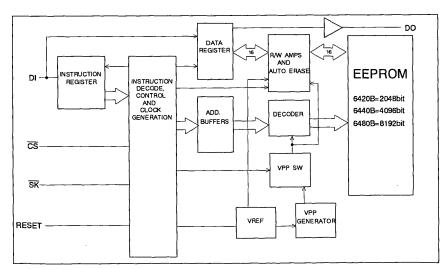


AK6420B / 40B / 80B

2K / 4K / 8Kbit Serial CMOS EEPROM

Features

- □ ADVANCED CMOS EEPROM TECHNOLOGY
- ☐ Wide Vcc (1.8V ~ 5.5V) operation
- \square AK6420B · · · 2048 bits: 128 × 16 organization


AK6440B $\cdot \cdot$ 4096 bits: 256 \times 16 organization

AK6480B $\cdot \cdot$ 8192 bits: 512 × 16 organization

- □ ONE CHIP MICROCOMPUTER INTERFACE
 - Interface with one chip microcomputer's serial communication port directly
- □ LOW POWER CONSUMPTION
 - 0.8µA Max (Standby mode)
- ☐ HIGH RELIABILITY

-Endurance : 100K cycles -Data Retention : 10 years

- □ SPECIAL FEATURES
 - High speed operation (fMAX=1MHz: Vcc=2.5V)
 - Automatic write cycle time-out with auto-ERASE
 - Automatic address increment (READ)
 - Software and Hardware controlled write protection
- □ IDEAL FOR LOW DENSITY DATA STORAGE
 - Low cost, space saving, 8-pin package (MSOP)

Block diagram

- 1 -

General Description

The AK6420B/40B/80B is a 2048/4096/8192bit, serial, read/write, non-volatile memory device fabricated using an advanced CMOS E2PROM technology. The AK6420B has 2048bits of memory organized into 128 registers of 16 bits each. The AK6440B has 4096bits of memory organized into 256 registers of 16 bits each. The AK6480B has 8192bits of memory organized into 512 registers of 16 bits each. The AK6420B/40B/80B can operate full function under wide operating voltage range from 1.8V to 5.5V. The charge up circuit is integrated for high voltage generation that is used for write operation.

The AK6420B/40B/80B can connect to the serial communication port of popular one chip microcomputer directly (3 line negative clock synchronous interface). At write operation, AK6420B/40B/80B takes in the write data from data input pin (DI) to a register synchronously with rising edge of input pulse of serial clock pin (\overline{SK}) . And at read operation, AK6420B/40B/80B takes out the read data from a register to data output pin (DO) synchronously with falling edge of \overline{SK} .

The AK6420B/40B/80B has 4 instructions such as READ, WRITE, WREN (write enable) and WRDS (write disable). Each instruction is organized by op-code block (8bits), address block (8bits) and data (8bits \times 2). When input level of \overline{SK} pin is high level and input level of chip select (\overline{CS}) pin is changed from high level to low level, AK6420B/40B/80B can receive the instructions.

Special features of the AK6420B/40B/80B include: automatic write time-out with auto-ERASE, Ready/Busy status signal output and ultra-low standby power mode when deselected ($\overline{\text{CS}}$ =high).

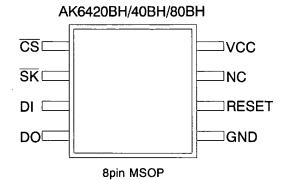
Software and Hardware controlled write protection

The AK6420B/40B/80B has 2 (hardware and software) write protection functions.

After power on or after execution of WRDS (write disable) instruction, execution of WRITE instruction will be disabled. This write protection condition continues until WREN instruction is executed or Vcc is removed from the part.

Execution of READ instruction is independent of both WREN and WRDS instructions.

Reset pin should be low level when WRITE instruction is executed. When the Reset pin is high level, the WRITE instruction is not executed.


Ready/Busy status signal

The DO pin indicates the Busy status. When input level of \overline{SK} pin is low level and input level of \overline{CS} pin is changed from high level to low level, the AK6420B/40B/80B is in the status output mode and the DO pin indicates the Ready/Busy status. The Ready/Busy status outputs on DO pin until \overline{CS} pin is changed from low level to high level, or first bit ("1") of op-code of next instruction is given to the part. Except when the device is in the status output mode or outputs data, the DO pin is in the high impedance state.

■Type of Products

Model	Memory size	Temp.Range	Vcc	Package
AK6420BH	2Kbits	-40°C~85°C	1.8V~5.5V	8pin Plastic MSOP
AK6440BH	4Kbits	-40°C~85°C	1.8V~5.5V	8pin Plastic MSOP
AK6480BH	8Kbits	-40°C~85°C	1.8V~5.5V	8pin Plastic MSOP

Pin arrangement

Pin Name **Function** $\overline{\text{CS}}$ Chip Select $\overline{\mathsf{SK}}$ Serial Data Clock DI Serial Data Input Serial Data Output DO **RESET RESET Input** Vcc **Power Supply GND** Ground NC Not Connected

■ Pin Description

CS (Chip Select)

When \overline{SK} is high level and \overline{CS} is changed from high level to low level, AK6420B/40B/80B can receive the instructions. \overline{CS} should be kept low level while receiving op-code, address and data and while outputting data. If \overline{CS} is changed to high level during the above period, AK6420B/40B/80B stops the instruction execution. When \overline{SK} is low and \overline{CS} is changed from high level to low level, AK6420B/40B/80B will be in status output mode. The \overline{CS} need not be low level during the automatic write time-out period (\overline{BUSY} status).

SK (Serial Clock)

The SK clock pin is the synchronous clock input for input/output data. At write operation, AK6420B/40B/80B takes in the write data from data input pin (DI) synchronously with rising edge of input pulse of serial clock pin (\overline{SK}) . And at read operation, AK6420B/40B/80B takes out the read data to data output pin (DO) synchronously with falling edge of \overline{SK} . The \overline{SK} clock is not needed during the automatic write time-out period $\overline{(BUSY)}$ status), the status output period and when the device isn't selected $\overline{(CS)}$ = high level).

DI (Data Input)

The op-code, address and write data is input to the DI pin.

DO (Data Output)

The DO pin outputs the read data and status signal and will be high impedance except for this timing.

RESET (Reset)

The AK6420B/40B/80B stops executing the write instruction when the RESET pin is high level. The RESET pin should be low level while the write instruction input period and the automatic write time-out period. If the RESET pin is high level while the automatic write time-out period, the AK6420B/40B/80B stops execution of internal programming and the device returns to ready status. In this case the word data of the specified address will be incomplete. When inputting the new instruction after RESET, the $\overline{\text{CS}}$ pin should be set to high level. The read, write enable and write disable instructions are not affected by RESET pin status.

Vcc (Power Supply)

GND (Ground)

Functional Description

The AK6420B/40B/80B has 4 instructions such as READ, WRITE, WREN (write enable) and WRDS (write disable). Each instruction is organized by op-code block (8bits), address block (8bits) and data (8bits \times 2). When input level of \overline{SK} pin is high level and input level of chip select (\overline{CS}) pin is changed from high level to low

level, AK6420B/40B/80B can receive the instructions.

When the instructions are executed consecutively, the $\overline{\text{CS}}$ pin should be brought to high level for a minimum of 250ns(Tcs) between consecutive instruction cycle.

■ Instruction Set For 6420B

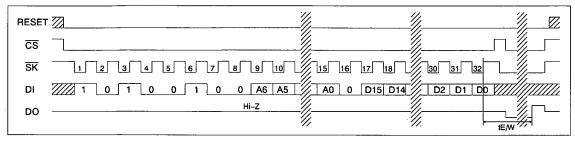
Instruction	Op-Code	Address	Data
READ	10101000	A6 A5 A4 A3 A2 A1 A0 0	D15 -D0
WRITE	10100100	A6 A5 A4 A3 A2 A1 A0 0	D15 -D0
WREN	10100011	× × × × × × ×	
WRDS	10100000	x x x x x x x x	
(WRAL)	10101111	x x x x x x x x	D15 -D0

■ Instruction Set For 6440B

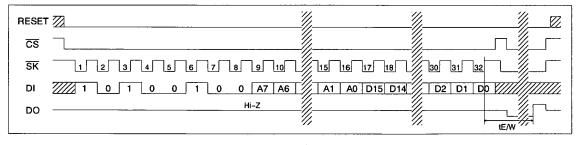
Instruction	Op-Code	Address	Data
READ	10101000	A7 A6 A5 A4 A3 A2 A1 A0	D15 -D0
WRITE	10100100	A7 A6 A5 A4 A3 A2 A1 A0	D15 -D0
WREN	10100011	× × × × × × ×	
WRDS	10100000	x x x x x x x x	
(WRAL)	10101111	× × × × × × ×	D15 -D0

■ Instruction Set For 6480B

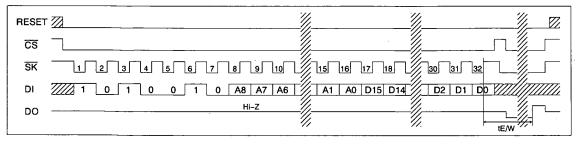
Instruction	Op-Code	Address	Data
READ	1010100A8	A7 A6 A5 A4 A3 A2 A1 A0	D15 -D0
WRITE	1010010A8	A7 A6 A5 A4 A3 A2 A1 A0	D15 -D0
WREN	10100011	× × × × × × ×	
WRDS	10100000	× × × × × × ×	
(WRAL)	10101111	x x x x x x x x	D15 -D0


×:don't care

(Note) The WRAL instruction is used for factory function test only. User can't use this instruction .

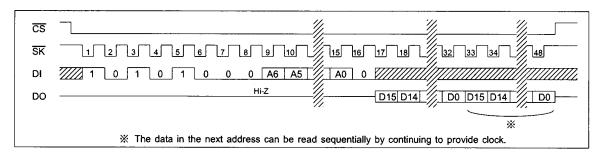

Write

The write instruction is followed by 16 bits of data to be written into the specified address. After the 32nd rising edge of \overline{SK} to read D0 in, the AK6420B/40B/80B will be put into the automatic write time-out period. During the automatic write time-out period (\overline{Busy} status)and while entering write instruction, the RESET pin should be low level. If the RESET pin is set to high level during the automatic write time-out period, the AK6420B/40B/80B stops execution of internal programming and the device returns to ready status. In this case the word data of the specified address will be incomplete. When inputting the new instruction after RESET, the \overline{CS} pin should be set to high level. When the RESET pin is kept at high level, the write is not executed. This becomes write protection function.

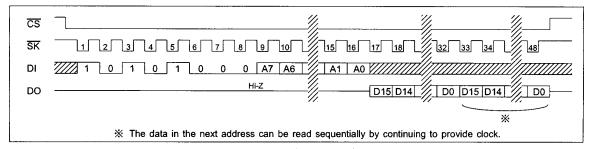

The $\overline{\text{CS}}$ pin need not be high level during automatic write time-out period ($\overline{\text{BUSY}}$ status).

WRITE (AK6420B)

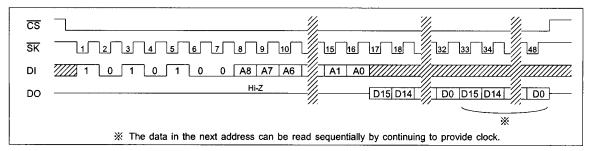
WRITE (AK6440B)


WRITE (AK6480B)

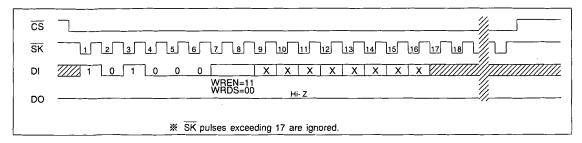
Read


The read instruction is the only instruction which outputs serial data on the DO pin. When the 17th falling edge of \overline{SK} is received, the DO pin will come out of high impedance state and shift out the data from D15 first in descending order which is located at the address specified in the instruction.

The data in the next address can be read sequentially by continuing to provide clock. The address automatically cycles to the next higher address after the 16bit data shifted out.


- AK6420B · · When the highest address is reached (\$7F), the address counter rolls over to address \$00 allowing the read cycle to be continued indefinitely.
- AK6440B · · When the highest address is reached (\$FF), the address counter rolls over to address \$00 allowing the read cycle to be continued indefinitely.
- AK6480B · · When the highest address is reached (\$1FF), the address counter rolls over to address \$000 allowing the read cycle to be continued indefinitely.

READ (AK6420B)


READ (AK6440B)

READ (AK6480B)

WREN / WRDS (Write Enable and Write Disable)

When Vcc is applied to the part, it powers up in the programming disable (WRDS) state. Programming must be preceded by a programming enable (WREN) instruction. Programming remains enabled until a programming disable (WRDS) instruction is executed or Vcc is removed from the part. The programming disable instruction is provided to protect against accidental data disturb. Execution of a read instruction is not affected by both WREN and WRDS instructions.

WREN / WRDS (AK6420B/40B/80B)

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Power Supply	VCC	-0.6	+7.0	V
All Input Voltages with Respect to Ground	VIO	-0.6	VCC+0.6	V
Ambient storage temperature	Tst	-65	+150	°C

Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum conditions for extended periods may affect device reliability.

Recommended Operating Condition

Parameter	Symbol	Min	Max	Unit
Power Supply	VCC	1.8	5.5	V
Ambient Operating Temperature	Та	-40	+85	°C

Electrical Characteristics

(1) D.C. ELECTRICAL CHARACTERISTICS

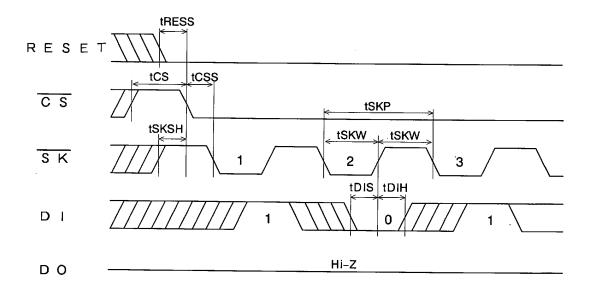
($1.8V \le Vcc \le 5.5V$, $-40^{\circ}C \le Ta \le 85^{\circ}C$, unless otherwise specified)

Parameter	Symbol	Condit	tion	Min.	Max.	Unit
Current Dissipation	ICC1	VCC=5.5V, tSKP=500ns, *1			4.0	mA
(WRITE)	ICC2	VCC=2.5V, *1	6420B		2.0	mA
		tSKP=500ns	6440B/80B		2.5	mΑ
	ICC3	VCC=1.8V, *1	6420B		1.5	mA
		tSKP=1.5us	6440B/80B		2.0	mA
Current Dissipation	ICC4	VCC=5.5V, tSKF	P=500ns, *1		0.75	mA
(READ,WREN,	ICC5	VCC=2.5V, tSKF	P=500ns, *1		0.3	mA
WRDS)	ICC6	VCC=1.8V, tSKF	P=1.5us, *1		0.15	mA
Current Dissipation	ICCsb	VCC=5.5V	*2		0.8	uA
(Standby)			_			
Input High Voltage1 CS, SK, RESET pin	VIH1	1.8V≤VCC≤5.5V		0.8×VCC	VCC+0.5	V
Input High Voltage2	VIH2	2.5V≤VCC≤5.5V	1	0.7×VCC	VCC+0.5	V
DI pin	VIH3	1.8V≤VCC<2.5V	/	0.8×VCC	VCC+0.5	V
Input Low Voltage1 CS, SK, RESET pin	VIL1	1.8V≤VCC≤5.5V	,	0	0.2×VCC	V
Input Low Voltage2	VIL2	2.5V≤VCC≤5.5V	′	0	0.3×VCC	V
DI pin	VIL3	1.8V≤VCC<2.5V	/	0	0.2×VCC	V
Output High Voltage	VOH1	2.5V≤VCC≤5.5V IOH=-50μA	,	VCC-0.3		V
	VOH2	1.8V≤VCC<2.5V IOH=-50μA	′	VCC-0.3		V
Output Low Voltage	VOL1	2.5V≤VCC≤5.5V	'		0.4	V
	_	IOL=1.0mA	_			
	VOL2	1.8V≤VCC<2.5V	,		0.4	V
		IOL=0.1mA				
Input Leakage	ILI	VCC=5.5V,VIN=5.5V			±1.0	uA
Output Leakage	ILO	VCC=5.5V VOUT=5.5V,CS	- =VCC		±1.0	uA

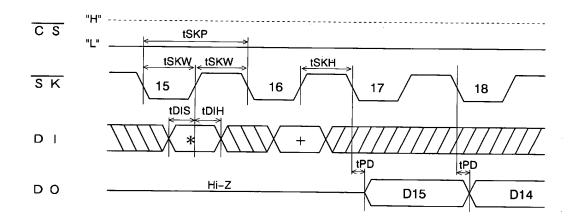
^{*1:} VIN=VIH/VIL,DO=Open

^{*2:} $\overline{\text{CS}}=\text{Vcc}, \overline{\text{SK}}/\text{DI}/\text{RESET}=\text{Vcc}/\text{GND}, \text{DO}=\text{Open}$

(2) A.C. ELECTRICAL CHARACTERISTICS

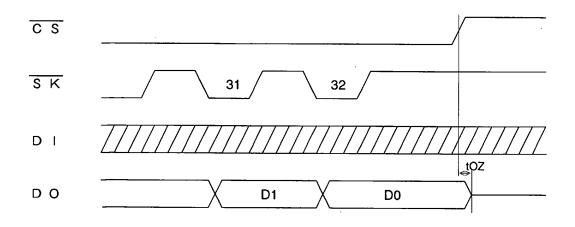

(1.8V \leq Vcc \leq 5.5V, -40°C \leq Ta \leq 85°C, unless otherwise specified)

Parameter	Symbol	Condition	Min.	Max.	Unit
SK Cycle Time	tSKP1	2.5V≤VCC≤5.5V	500		ns
	tSKP2	1.8V≤VCC<2.5V	1.5		us
SK Pulse Width	tSKW1	2.5V≤VCC≤5.5V	250		ns
	tSKW2	1.8V≤VCC<2.5V	750		ns
SK High Pulse Width	tSKH1	4.5V≤VCC≤5.5V	250		ns
	tSKH2	2.5V≤VCC<4.5V	500		ns
*3	tSKH3	1.8V≤VCC<2.5V	750		ns
CS Setup Time	tCSS		100		ns
CS Hold Time	tCSH		100		ns
SK Setup Time	tSKSH		100		ns
	/tSKSL				
RESET Setup Time	tRESS		0		ns
Data Setup Time	tDIS1	4.5V≤VCC≤5.5V	100		ns
	tDIS2	1.8V≤VCC<4.5V	200		ns
Data Hold Time	tDIH1	4.5V≤VCC≤5.5V	100		ns
	tDIH2	1.8V≤VCC<4.5V	200		ns
DO pin	tPD1	4.5V≤VCC≤5.5V, *4		150	ns
Output delay	tPD2	2.5V≤VCC<4.5V, *4		300	ns
	tPD3	1.8V≤VCC<2.5V. *4		500	ns
Selftimed Programming	tE/W			10	ms
Time					
Min CS High Time	tCS		250		ns
DO High-Z Time	tOZ			500	ns

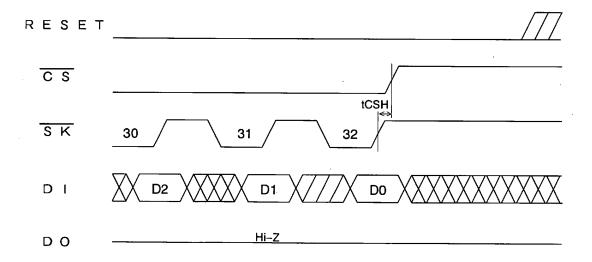

^{*3:} tskh is the high pulse width of 16th $\overline{\text{SK}}$ pulse in READ operation. When the data in the next address are read sequentially by continuing to provide clock, tskh are applied to the high pulse width of 32nd and 48th (multiple of 16) $\overline{\text{SK}}$ pulse in READ operation.

^{*4:} CL=100pF

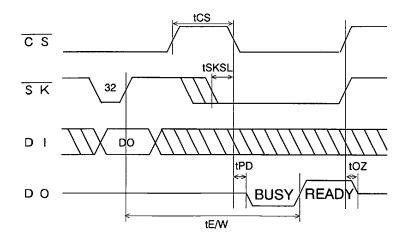
Synchronous Data Timing



Instruction Input



(note) * = "A0" for AK6420B, "A1" for AK6440B/80B + = "0" for AK6420B, "A0" for AK6440B/80B


Data Output (READ)

Data Output (READ)

Data Input (WRITE)

Ready / BUSY Signal Output (DO pin)

IMPORTANT NOTICE -

- These products and their specifications are subject to change without notice. Before considering any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized distributor concerning their current status.
- AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an
 export license or other official approval under the law and regulations of the country of
 export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other hazard related device or system, and AKM assumes no responsibility relating to any such use, except with the express written consent of the Representative Director of AKM. As used here:
- (a) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
- (b) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
- It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places the product with a third party to notify that party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.