Preliminary Technical Data AD5450/AD5451/AD5452/AD5453*

FEATURES

+2.5 V to +5.5 V Supply Operation
50MHz Serial Interface
10MHz Multiplying Bandwidth
+10 V Reference Input
8-Lead TSOT \& MSOP Packages
Pin Compatible 8, 10, 12 and 14 Bit Current Output DACs
Extended Temperature range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Guaranteed Monotonic
Four Quadrant Multiplication
Power On Reset with brown out detect
$<\boldsymbol{\mu}$ A typical Current Consumption

APPLICATIONS

Portable Battery Powered Applications
Waveform Generators
Analog Processing
Instrumentation Applications
Programmable Amplifiers and Attenuators
Digitally-Controlled Calibration
Programmable Filters and Oscillators
CompositeVideo
Ultrasound
Gain, offset and Voltage Trimming

GENERAL DESCRIPTION

The AD 5450/AD 5451/AD 5452/AD 5453 are CMOS 8, 10, 12 and 14 -bit Current Output digital-to-analog converters respectively.
These devices operate from $\mathrm{a}+2.5 \mathrm{~V}$ to 5.5 V power supply, making them suited to battery powered applications and many other applications.
These DACs utilize double buffered 3 -wire serial interface that is compatible with SPI $^{\top M}, ~ Q S P I^{\top M}, ~ M I C R O W I R E ~ T M ~$ and most DSP interface standards.
On power-up, the internal shift register and latches are filled with zeros and the DAC output is at zero scale.
As a result of manufacture on a CMOS sub micron process, they offer excellent four quadrant multiplication characteristics, with large signal multiplying bandwidths of 10 MHz .

[^0]REV. PrD Oct, 2003

FUNCTIONAL BLOCK DIAGRAM

The applied external reference input voltage ($\mathrm{V}_{\mathrm{ReF}}$) determines the full scale output current. An integrated feedback resistor (R_{FB}) provides temperature tracking and full scale voltage output when combined with an external Current to Voltage precision amplifier.

The AD 5450/AD 5451/AD 5452/AD 5453 DAC s are available in small 8-lead TSOT \& MSOP packages.

AD5450/AD5451/AD5452/AD5453- SPECIFICATIONS ${ }^{1}$
 $\mathrm{V}_{D D}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{C}_{\text {OUT }} \mathrm{X}=0 \mathrm{~V}$. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted. DC performance measured with

 OP1177, AC performance with AD9631 unless otherwise noted.)| Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STATIC PERFORMANCE
 AD 5450
 Resolution
 Relative Accuracy
 Differential Nonlinearity
 AD 5451
 Resolution
 Relative Accuracy
 Differential Nonlinearity
 AD 5452
 Resolution
 Relative Accuracy
 Differential Nonlinearity
 AD 5453
 Resolution
 Relative Accuracy
 Differential Nonlinearity
 Total Unadjusted Error
 Gain Error
 Gain Error Temp Coefficient ${ }^{2}$
 Output Leakage Current
 Output Voltage Compliance Range | | ± 5 1.23 | $\begin{aligned} & 8 \\ & \pm 0.25 \\ & \pm 1 / 2 \\ & 10 \\ & \pm 0.25 \\ & \pm 1 / 2 \\ & 12 \\ & \pm 0.5 \\ & \pm 1 / 2 \\ & 14 \\ & \pm 2 \\ & \pm 1 \\ & \pm 2.44 \\ & \pm 1.22 \\ & \pm 10 \\ & \pm 50 \end{aligned}$ | Bits
 LSB
 LSB
 Bits
 L S B
 LSB
 Bits
 LSB
 LSB
 Bits
 LSB
 LSB
 mV
 mV
 ppm FSR $/{ }^{\circ} \mathrm{C}$
 nA
 nA
 V | Guaranteed Monotonic
 Guaranteed Monotonic
 Guaranteed Monotonic
 Guaranteed Monotonic $\begin{aligned} & \text { D ata }=0000_{\mathrm{H}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, I_{\text {OUT } 1} \\ & \text { D ata }=0000_{\mathrm{H}}, I_{\text {OUT } 1} \end{aligned}$ |
| REFERENCE INPUT ${ }^{2}$ Reference Input Range $V_{\text {REF }}$ Input Resistance | 8 | $\begin{aligned} & \pm 10 \\ & 9.3 \end{aligned}$ | 12 | $\begin{aligned} & \mathrm{V} \\ & \mathrm{k} \Omega \end{aligned}$ | Input resistance $\mathrm{TC}=-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| DIGITAL INPUTS ${ }^{2}$
 Input High Voltage, $\mathrm{V}_{\text {IH }}$
 Input Low Voltage, $\mathrm{V}_{\text {IL }}$
 Input Leakage Current, IIL Input Capacitance | $\begin{aligned} & 2.0 \\ & 1.7 \end{aligned}$ | | $\begin{aligned} & 0.8 \\ & 0.7 \\ & 1 \\ & 10 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{D D}=3.6 \mathrm{~V} \text { to } 5 \mathrm{~V} \\ & \mathrm{~V}_{D D}=2.5 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\ & \mathrm{~V}_{D D}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{D D}=2.5 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \end{aligned}$ |
| DYNAMIC PERFORMANCE ${ }^{2}$ Reference M ultiplying $B W$ O utput V oltage Settling Time
 AD 5450
 AD 5451
 AD 5452
 AD 5453
 Digital Delay
 10\% to 90\% Dettling Time
 Digital to Analog Glitch Impulse
 Multiplying Feedthrough Error
 Output C apacitance IOUT1
 IOUT2
 Digital Feedthrough | | 10
 100
 110
 160
 180
 20
 10
 3
 -75
 5
 10
 10
 5
 0.1 | $\begin{aligned} & 40 \\ & 30 \end{aligned}$ | ns
 ns
 ns
 ns
 ns
 ns
 nV-s
 dB
 pF
 pF
 pF
 pF
 nV-s | $\mathrm{V}_{\text {REF }}=+/-3.5 \mathrm{~V}, \mathrm{DAC}$ loaded all 1 s
 $V_{\text {REF }}=10 \mathrm{~V}, R_{\text {LOAD }}=100 \Omega, C_{\text {LOAD }}=15 \mathrm{pF}$
 DAC latch alternately loaded with 0 s and 1 s .
 M easured to $+/-16 \mathrm{mV}$ of FS
 M easured to $+/-4 \mathrm{mV}$ of FS
 M easured to $+/-1 \mathrm{mV}$ of $F S$
 M easured to $+/-1 \mathrm{mV}$ of FS
 Interface delay time
 Rise and Fall time, $\mathrm{V}_{\text {Ref }}=10 \mathrm{~V}, \mathrm{R}_{\text {Load }}=$ $100 \Omega, C_{\text {LOAD }}=15 \mathrm{pF}$
 1 LSB change around Major Carry, $\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$
 DAC latch loaded with all Os.
 Reference $=1 \mathrm{MHz}$.
 Reference $=10 \mathrm{MHz}$.
 DAC Latches Loaded with all Os
 DAC Latches Loaded with all 1s
 DAC Latches Loaded with all Os
 DAC Latches Loaded with all 1s
 Feedthrough to DAC output with CS high and Alternate Loading of all 0 s and all 1 s . |

AD5450/AD5451/AD5452/AD5453

$\left(V_{D D}=2.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }} \mathrm{X}=0 \mathrm{~V}$. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted. DC performance measured with OP1177, AC performance with AD9631 unless otherwise noted.)

P arameter	Min	Typ	Max	Units	Conditions
Total Harmonic Distortion	-80			dB	$\mathrm{V}_{\text {REF }}=3.5 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$, All 1 s loaded, $\mathrm{f}=1 \mathrm{kHz}$
Digital THD, Clock $=1 \mathrm{MHz}$ 50 kHz fout	75				@ 1kHz
Output Noise Spectral Density SFDR performance (Wideband)	25			$n \mathrm{~V} / \sqrt{ } \mathrm{Hz}$	
Update $=1 \mathrm{MHz}$					
50 kHz Fout	78			dB	
20 kHz Fout	78			$d B$	
SFDR performance (N arrow $\mathrm{Band}^{\text {a }}$)					Update $=1 \mathrm{MHz}, \mathrm{V}_{\text {REF }}=3.5 \mathrm{~V}$
50 kHz Fout				dB	
20 kHz Fout		87		dB	
Intermodulation Distortion	78			dB	$\begin{aligned} & f 1=20 \mathrm{kH} z, f 2=25 \mathrm{kHz}, \text { U pdate }=1 \mathrm{M} \mathrm{~Hz}, \\ & V_{\text {REF }}=3.5 \mathrm{~V} \end{aligned}$
POWER REQUIREMENTS					
Power Supply Range	2.5		5.5	V	
$\mathrm{I}_{\text {DD }}$				$\mu \mathrm{A}$	Logic Inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\text {D }}$
Power Supply Sensitivity ${ }^{2}$			0.001	\%/\%	$\Delta \mathrm{V}_{\text {D }}= \pm 5 \%$

${ }^{1} \mathrm{~T}$ emperature range is as follows: Y Version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2} \mathrm{G}$ uaranteed by design and characterisation, not subject to production test.
Specifications subject to change without notice.

TIMINGCHARACTERISTICS ${ }^{1}$

($\mathrm{V}_{\text {REF }}=+5 \mathrm{~V}, \mathrm{I}_{\text {OUT }} 2=0 \mathrm{~V}$. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted.)

Parameter	$\mathbf{V}_{\text {DD }}=\mathbf{4 . 5 V}$ to 5.5 V	$\mathbf{V}_{\text {DD }}=\mathbf{2 . 5} \mathbf{V}$ to 5.5 V	Units	Conditions/Comments
$\mathrm{f}_{\text {SCLK }}$		50	$\mathrm{MHz} \max$	Max Clock frequency
t_{1}		20	ns min	SCLK Cycle time
t_{2}	8	ns min	SCLK High Time	
t_{3}	8	ns min	SCLK Low Time	
t_{4}	8	ns min	SYNC falling edge to SCLK active edge setup time	
t_{5}	5	ns min	D ata Setup Time	
t_{6}		4.5	ns min	D ata H old Time
t_{7}	5	ns min	SYNC rising edge to SCLK active edge	
t_{8}		30	ns min	M inimum SYNC high time

NOTES

${ }^{1}$ See Figures 1. Temperature range is as follows: Y Version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Guaranteed by design and characterisation, not subject to production test. All input signals are specified with $\operatorname{tr}=\mathrm{tf}=5 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{I L}+\mathrm{V}_{I H}\right) / 2$.

Specifications subject to change without notice.

Figure 1. Timing Diagram.

PRELIMINARY TECHNICAL DATA

AD5450/AD5451/AD5452/AD5453

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$
($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

$V_{\text {DD }}$ to GND	-0.3 V to +7 V
$V_{\text {REF }}, \mathrm{R}_{\text {Fb }}$ to GND	-12 V to +12 V
lout 1 to GND	-0.3 V to +7 V
Input Current to any pin except supplies	ies $\pm 10 \mathrm{~mA}$
Logic Inputs \& Output ${ }^{3}$ (${ }^{\text {a }}$	-0.3V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating Temperature Range	
Industrial (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
8 lead M SOP $\theta_{\text {JA }}$ Thermal Impedance	$206^{\circ} \mathrm{C} / \mathrm{W}$
8 lead TSOT $\theta_{\text {JA }}$ Thermal Impedance	$211^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 seconds)	nds) $300^{\circ} \mathrm{C}$
	seconds) $+235{ }^{\circ} \mathrm{C}$

IR Reflow, Peak Temperature (<20 seconds)
$+235^{\circ} \mathrm{C}$
NOTES
${ }^{1}$ Stresses abovethoselisted under "AbsoluteM aximum R atings" may causepermanent damageto thedevice. T hisisastress rating only and functional operation of the device at these or any other conditions above thoselisted in theoperational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periodsmay affect devicereliability. Only oneabsolutemaximum ratingmay be applied at any one time.
${ }^{2}$ Transient currents of up to 100 mA will not cause SCR latchup.
${ }^{3}$ O vervoltages at SCLK, SYNC, DIN, will be clamped by internal diodes. Current should be limited to the maximum ratings given.

ORDERING GUIDE

Model	Resolution	INL	Temperature Range	Package Description	Branding	Package Option
AD 5450Y UJ	8	± 0.25	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	T SO T		UJ-8
AD 5451Y U	10	± 0.25	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	T SO T	UJ-8	
AD 5452Y U	12	± 0.5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	T SO T	UJ-8	
AD 5452Y RM	12	± 0.5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	M SOP	RM -8	
AD 5453Y U	14	± 2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	T SO T	UJ-8	
AD 5453YRM	14	± 2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	M SOP	RM -8	

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 5450/AD 5451/AD 5452/AD 5453 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. T herefore,

AD5450/AD5451/AD5452/AD5453

PIN FUNCTION DESCRIPTION

MSOP	TSOT	Mnemonic	Function
1	8	Iout 1	DAC Current Output.
2	7	G N D	Ground Pin.
3	6	SCLK	Serial Clock Input. By default, data is clocked into the input shift register on the falling edge of the serial clock input. Alternatively, by means of the serial control bits, the device may be configured such that data is clocked into the shift register on the rising edge of SCLK.
4	5	SDIN	Serial D ata Input. D ata is clocked into the 16 -bit input register on the active edge of the serial clock input. By default, on power up, data is clocked into the shift register on the falling edge of SCLK. The control bits allow the user to change the active edge to rising edge.
5	4	SY N C	Active Low Control Input. This is the frame synchronization signal for the input data. Data is loaded to the shift register on the active edge of the following clocks.
6	3	$V_{D D}$	Positive power supply input. These parts can operate from a supply of +2.5 V to +5.5 V.
7	2	$V_{\text {REF }}$	DAC reference voltage input pin.
8	1	R_{FB}	DAC feedback resistor pin. Establish voltage output for the DAC by connecting to external amplifier output.

PIN CONFIGURATION

TSOT (UJ-8)

MSOP (RM-8)

PRELIMINARY TECHNICAL DATA

AD5450/AD5451/AD5452/AD5453

TERMINOLOGY

Relative Accuracy

Relative accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero and full scale and is normally expressed in LSBs or as a percentage of full scale reading.

Differential Nonlinearity

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of -1 LSB max over the operating temperature range ensures monotonicity.

Gain Error

Gain error or full-scale error is a measure of the output error between an ideal DAC and the actual device output. For these DACs, ideal maximum output is $V_{\text {REF }}-1$ LSB. Gain error of the DACs is adjustable to zero with external resistance.

Output Leakage Current

Output leakage current is current which flows in the DAC ladder switches when these are turned off. For the louti terminal, it can be measured by loading all 0 s to the DAC and measuring the louti current. M inimum current will flow in the Ioutz line when the DAC is loaded with all is

Output Capacitance

Capacitance from $I_{\text {OUT1 }}$ or $I_{\text {OUT2 }}$ to AGND.

Output Current Settling Time

This is the amount of time it takes for the output to settle to a specified level for a full scale input change. For these devices, it is specifed with a 100Ω resistor to ground. The settling time specification includes the digital delay from SYNC rising edge to the full scale output change.

Digital to Analog Glitch Impulse

The amount of charge injected from the digital inputs to the analog output when the inputs change state. This is normally specified as the area of the glitch in either pA -secs or nV -secs depending upon whether the glitch is measured as a current or voltage signal.

Digital Feedthrough

When the device is not selected, high frequency logic activity on the device digital inputs may be capacitivelly coupled through the device to show up as noise on the I IUT pins and subsequently into the following circuitry. This noise is digital feedthrough.

Multiplying Feedthrough Error

This is the error due to capacitive feedthrough from the DAC reference input to the DAC Iouti terminal, when all Os are loaded to the DAC.

Total Harmonic Distortion (THD)

The DAC is driven by an ac reference. The ratio of the rms sum of the harmonics of the DAC output to the fundamental value is the THD. Usually only the lower order harmonices are included, such as second to fifth.

$$
\begin{gathered}
T H D=20 \log \sqrt{ }\left(V_{2}{ }^{2}+V_{3}{ }^{2}+V_{4}^{2}+V_{5}^{2}\right) \\
V_{1}
\end{gathered}
$$

Digital Intermodulation Distortion

Second order intermodulation (IMD) measurements are the relative magnitudes of the fa and fb tones generated digitally by the DAC and the second order products at $2 f a-f b$ and $2 \mathrm{fb}-\mathrm{fa}$.

Compliance Voltage Range

The maximum range of (output) terminal voltage for which the device will provide the specified characteristics.

Spurious-Free Dynamic Range(SFDR)

It is the usable dynamic range of a DAC before spurious noise interferes or distorts the fundamental signal. SFDR is the measure of difference in amplitude between the fundamental and the largest harmonically or nonharmonically related spur from dc to full Nyquist bandwidth (half the DAC sampling rate or fs/2). Narrow band SFDR is a measure of SFDR over an arbitrary window size, in this case 50% of hte fundamental. Digital SFDR is a measure of the usable dymanic range of the DAC when the signal is a digitally generated sine wave.

TPC 1. INL vs. Code (8-Bit DAC)

TPC 4. INL vs. Code (14-Bit DAC)

TPC 7. DNL vs. Code (12-Bit DAC)

TPC 2. INL vs. Code (10-Bit DAC)

TPC 5. DNL vs. Code (8-Bit DAC)

TPC 8. DNL vs. Code (14-Bit DAC)

TPC 3. INL vs. Code (12-Bit DAC)

TPC 6. DNL vs. Code (10-Bit DAC)

TPC 9. INL vs Reference Voltage

PRELIMINARY TECHNICAL DATA

AD5450/AD5451/AD5452/AD5453

TPC10. DNL vs. Reference Voltage

TPC 13. DNL vs Code-Biased Mode
\square
TPC 16. TUE vs Code

TPC11. Linearity Errors vs. $V_{D D}$

TPC 14. INL Error vs. Reference Biased Mode

TPC 17. Supply Current vs. Clock Freq

TPC12. INL vs Code - Biased Mode

TPC 15. DNL Error vs. Reference Biased Mode

TPC 18. Logic Threshold vs Supply Voltage
\square
TPC 19. Supply Current vs Logic Input Voltage
\square
TPC 22. Reference Multiplying Bandwidth-small signal
\square
TPC 25. Midscale Transition and Digital Feedthrough

TPC 20. Reference Multiplying Bandwidth -small signal

TPC 23. Reference Multiplying Bandwidth - large signal

TPC 26. Power Supply Rejection vs Frequency

TPC 21. Reference Multiplying Bandwidth - large signal

TPC 24. Settling Time

TPC 27. Noise Spectral Density vs Frequency

AD5450/AD5451/AD5452/AD5453

TPC 28. TBD

TPC 29. TBD

TPC 30. TBD

AD5450/AD5451/AD5452/AD5453

GENERAL DESCRIPTION DAC SECTION

The AD 5450, AD5451, AD5452 and AD5453 are 8, 10, 12 and 14 bit current output DACs consisting of a segmented (4-Bits) inverting R-2R ladder configuration. The feedback resistor $R_{F B}$ has a value of R. The value of R is typically $9.3 \mathrm{k} \Omega$ (minimum $8 \mathrm{k} \Omega$ and maximum $12 \mathrm{k} \Omega$). If $I_{\text {Outi }}$ is kept at the same potential as GND, a constant current flows in each ladder leg, regardless of digital input code. Therefore, the input resistance presented at $\mathrm{V}_{\text {Ref }}$ is always constant and nominally of value R. The DAC output (Iout) is code-dependent, producing various resistances and capacitances. External amplifier choice should take into account the variation in impedance generated by the DAC on the amplifiers inverting input node.
Access is provided to the $V_{\text {REF }}, R_{F B}$, and $I_{\text {OUT1 }}$ terminals of the DAC, making the device extremely versatile and allowing it to be configured in several different operating modes, for example, to provide a unipolar output and in four quadrant multiplication in bipolar mode. N ote that a matching switch is used in series with the internal $R_{\text {FB }}$ feedback resistor. If users attempt to measure $R_{F B}$, power must be applied to $V_{D D}$ to achieve continuity.

SERIAL INTERFACE

The AD 5450/AD 5451/AD 5452/AD 5453 have an easy to use 3 -wire interface which is compatible with SPI/QSPI/ M icroWire and DSP interface standards. Data is written to the device in 16 bit words. This 16 -bit word consists of 2 control bits and either 8,1012 , or 14 data bits as shown in Figure 2. The AD 5453 uses all 14 bits of DAC data. The AD 5452 uses twelve bits and ignores the two LSBs,
similarly the AD5451 uses ten bits and ignores the four LSBs, while the AD5450 uses eight bits and ignores the last six bits.

DAC Control Bits C1, C0

C ontrol bits C1 and C0 the user to load and update the new DAC code and to change the active clock edge. By default the shift register clocks data in on the falling edge, this can be changed via the control bits. In this case, the DAC core is inoperative until the next data frame. A power cycle resets this back to default condition. On chip power on reset circuitry ensures the device powers on with zeroscale loaded to the DAC register and lout line.

TABLE III. DAC CONTROL BITS

C1 C0 Funtion Implemented

00 Load and U pdate(Power On D efault)
01 Reserved
10 Reserved
11 Clock Data to shift register On Rising Edge

SYNC Function

SYNC is an edge-triggered input that acts as a frame synchronization signal and chip enable. Data can only be transferred into the device while SYNC is low. To start the serial data transfer, SYNC should be taken low observing the minimum SYNC falling to SCLK falling edge setup time, t_{4}.
After the falling edge of the 16th SCLK pulse, bring SYNC high to transfer data from the input shift register to the DAC register.

Figure 2a. AD5450 8 bit Input Shift Register Contents

Figure 2b. AD5451 10 bit Input Shift Register Contents

Figure 2c. AD5452 12 bit Input Shift Register Contents

Figure 2c. AD5453 14 bit Input Shift Register Contents

PRELIMINARY TECHNICAL DATA

AD5450/AD5451/AD5452/AD5453

CIRCUIT OPERATION

Unipolar Mode

U sing a single op amp, these devices can easily be configured to provide 2 quadrant multiplying operation or a unipolar output voltage swing as shown in Figure 3.
When an output amplifier is connected in unipolar mode, the output voltage is given by:

$$
V_{\text {OUT }}=-D / 2^{n} \times V_{\text {REF }}
$$

Where D is the fractional representation of the digital word loaded to the DAC, and n is the number of bits.

$$
\begin{aligned}
D & =0 \text { to } 255 \text { (} 8 \text {-Bit AD 5450) } \\
& =0 \text { to } 1023 \text { (10-Bit AD 5451) } \\
& =0 \text { to } 4095 \text { (12-Bit AD 5452) } \\
& =0 \text { to } 16383 \text { (14-Bit AD 5453) }
\end{aligned}
$$

Note that the output voltage polarity is opposite to the $\mathrm{V}_{\text {REF }}$ polarity for dc reference voltages.

NOTES:
${ }^{1}$ R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.
${ }^{2}$ C1 PHASE COMPENSATION ($1 \mathrm{pF}-5 \mathrm{pF}$) MAY BE REQUIRED IF A1 IS A HIGH SPEED AMPLIFIER.

Figure 3. Unipolar Operation
These DACs are designed to operate with either negative or positive reference voltages. The $\mathrm{V}_{D D}$ power pin is only used by the internal digital logic to drive the DAC switches' ON and OFF states.
These DACs are also designed to accommodate ac reference input signals in the range of -10 V to +10 V .

With a fixed 10 V reference, the circuit shown above will give an unipolar OV to -10V output voltage swing. When V_{IN} is an ac signal, the circuit performs two-quadrant multiplication.
The following table shows the relationship between digital code and expected output voltage for unipolar operation. (AD 5450, 8-Bit device).

Table I. Unipolar Code Table

Digital Input	Analog Output (V)
11111111	$-\mathrm{V}_{\text {REF }}(255 / 256)$
10000000	$-\mathrm{V}_{\text {REF }}(128 / 256)=-\mathrm{V}_{\text {REF }} / 2$
00000001	$-\mathrm{V}_{\text {REF }}(1 / 256)$
00000000	$-\mathrm{V}_{\text {REF }}(0 / 256)=0$

Bipolar Operation

In some applications, it may be necessary to generate full 4-Quadrant multplying operation or a bipolar output swing. This can be easily accomplished by using another external amplifier and some external resistors as shown in Figure 4. In this circuit, the second amplifier A2 provides a gain of 2. Biasing the external amplifier with an offset from the reference voltage results in full 4 -quadrant multiplying operation. The transfer function of this circuit shows that both negative and positive output voltages are created as the input data (D) is incremented from code zero ($\mathrm{V}_{\text {OUT }}=-\mathrm{V}_{\text {REF }}$) to midscale ($\mathrm{V}_{\text {OUT }}-\mathrm{OV}$) to full scale ($\mathrm{V}_{\text {OUT }}=+\mathrm{V}_{\text {REF }}$).

$$
V_{\text {OUT }}=\left(V_{\text {REF }} \times D / 2^{n-1}\right) \cdot V_{\text {REF }}
$$

Where D is the fractional representation of the digital word loaded to the DAC and n is the resolution of the DAC.

$$
\begin{aligned}
D & =0 \text { to } 255 \text { (} 8 \text {-Bit AD 5450) } \\
& =0 \text { to } 1023 \text { (10-Bit AD 5451) } \\
& =0 \text { to } 4095 \text { (12-Bit AD 5452) } \\
& =0 \text { to } 16383 \text { (14-Bit AD 5453) }
\end{aligned}
$$

When $V_{\text {IN }}$ is an ac signal, the circuit performs fourquadrant multiplication.
Table II. shows the relationship between digital code and the expected output voltage for bipolar operation (AD 5450, 8-Bit device).

AD5450/AD5451/AD5452/AD5453

Table II. Bipolar Code Table

Digital Input	Analog Output (V)
11111111	$+\mathrm{V}_{\text {REF }}(127 / 128)$
10000000	0
00000001	$-\mathrm{V}_{\text {REF }}(127 / 128)$
00000000	$-\mathrm{V}_{\text {REF }}(128 / 128)$

Stability

In the I-to-V configuration, the Iout of the DAC and the inverting node of the op amp must be connected as close as possible, and proper PCB layout techniques must be employed. Since every code change corresponds to a step function, gain peaking may occur if the op amp has limited GBP and there is excessive parasitic capacitance at the inverting node. This parasitic capacitance introduces a pole into the open loop response which can cause ringing or instability in the closed loop applications circuit.
An optional compensation capacitor, C1 can be added in parallel with $R_{F B}$ for stability as shown in figures 3 and 4. Too small a value of C 1 can produce ringing at the output, while too large a value can adversely affect the settling time. C1 should be found empirically but $1-2 \mathrm{pF}$ is generally adequate for the compensation.

SINGLE SUPPLY APPLICATIONS

Voltage Switching Mode of Operation

Figure 5 shows these DACs operating in the voltageswitching mode. The reference voltage, V_{IN} is applied to the $I_{\text {out }}$ pin, $I_{\text {OUt2 }}$ is connected to AGND and the output voltage is available at the $\mathrm{V}_{\text {REF }}$ terminal. In this configuration, a positive reference voltage results in a positive output voltage making single supply operation possible. The output from the DAC is voltage at a constant impedance (the DAC ladder resistance). Thus an op-amp is necessary to buffer the output voltage. The reference input no longer sees a constant input impedance, but one that varies with code. So, the voltage input should be driven from a low impedance source.

Figure 5. Single Supply Voltage Switching Mode Operation.
It is important to note that V_{IN} is limited to low voltages because the switches in the DAC ladder no longer have the same source-drain drive voltage. As a result their on resistance differs and this degrades the integral linearity of the DAC. Also, $\mathrm{V}_{\text {IN }}$ must not go negative by more than 0.3 V or an internal diode will turn on, exceeding the max
ratings of the device. In this type of application, the full range of multiplying capability of the DAC is lost.

POSITIVE OUTPUT VOLTAGE

Note that the output voltage polarity is opposite to the $\mathrm{V}_{\text {REF }}$ polarity for dc reference voltages. In order to achieve a positive voltage output, an applied negative reference to the input of the DAC is preferred over the output inversion through an inverting amplifier because of the resistors tolerance errors. To generate a negative reference, the reference can be level shifted by an op amp such that the $\mathrm{V}_{\text {OUt }}$ and GND pins of the reference become the virtual ground and -2.5 V respectively as shown in Figure 6.

NOTES:
${ }^{1}$ ADDITIONAL PINS OMITTED FOR CLARITY
${ }^{2}$ C1 PHASE COMPENSATION ($1 \mathrm{pF}-5 \mathrm{pF}$) MAY BE REQUIRED IF A1 IS A HIGH SPEED AMPLIFIER.

Figure 6. Positive Voltage output with minimum of components.

ADDING GAIN

In applications where the output voltage is required to be greater than $\mathrm{V}_{\text {IN }}$, gain can be added with an additional external amplifier or it can also be achieved in a single stage. It is important to take into consideration the effect of temperature coefficients of the thin film resistors of the DAC. Simply placing a resistor in series with the RFB resistor will causing mis-matches in the Temperature coefficients resulting in larger gain temperature coefficient errors. Instead, the circuit of Figure 7 is a recommended method of increasing the gain of the circuit. R1, R2 and R3 should all have similar temperature coefficients, but they need not match the temperature coefficients of the DAC. This approach is recommended in circuits where gains of great than 1 are required.

AD5450/AD5451/AD5452/AD5453

Figure 7. Increasing Gain of Current Output DAC

USED AS A DIVIDER OR PROGRAMMABLE GAIN ELEMENT

Current Steering DACs are very flexible and lend themselves to many different applications. If this type of DAC is connected as the feedback element of an op-amp and $R_{F B}$ is used as the input resistor as shown in Figure 8, then the output voltage is inversely proportional to the digital input fraction D. For $D=1-2^{n}$ the output voltage is

$$
V_{\text {OUT }}=-V_{\text {IN }} / D=-V_{\text {IN }} /\left(1-2^{-n}\right)
$$

Figure 8. Current Steering DAC used as a divider or Programmable Gain Element

As D is reduced, the output voltage increases. For small values of the digital fraction D, it is important to ensure that the arnplifier does not saturate and also that the required accuracy is met. For example, an eight bit DAC driven with the binary code $10 \mathrm{H}(00010000)$, i.e., 16 decimal, in the circuit of Figure 8 should cause the output voltage to be sixteen times $\mathrm{V}_{\text {IN }}$. However, if the DAC has a linearity specification of $+/-0.5 \mathrm{LSB}$ then D can in fact have the weight anywhere in the range 15.5/256 to $16.5 / 256$ so that the possible output voltage will be in the range $15.5 \mathrm{~V}_{\text {IN }}$ to $16.5 \mathrm{~V}_{\text {IN }}$-an error of $+3 \%$ even though the DAC itself has a maximum error of 0.2%.
DAC leakage current is also a potential error source in divider circuits. The leakage current must be counterbalanced by an opposite current supplied from the
op amp through the DAC. Since only a fraction D of the current into the $\mathrm{V}_{\text {REF }}$ terminal is routed to the $\mathrm{I}_{\text {OUT1 }}$ terminal, the output voltage has to change as follows:
Output Error Voltage Due to Dac Leakage

$$
=(\text { Leakage } \times R) / D
$$

where R is the DAC resistance at the $V_{\text {REF }}$ terminal. For a DAC leakage current of $10 n A, R=10$ kilohm and a gain (i.e., $1 / \mathrm{D}$) of 16 the error voltage is 1.6 mV .

REFERENCE SELECTION

When selecting a reference for use with the AD 5426 series of current output DACs, pay attention to the references output voltage temperature coefficient specification. This parameter not only affects the full scale error, but can also affect the linearity (INL and DNL) performance. The reference temperature coefficient should be consistent with the system accuracy specifications. For example, an 8 -bit system required to hold its overall specification to within 1 LSB over the temperature range $0-50^{\circ} \mathrm{C}$ dictates that the maximum system drift with temperature should be less than $78 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. A 14 -Bit system with the same temperature range to overall specification within 2 LSBs requires a maximum drift of $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. By choosing a precision reference with low output temperature coefficient this error source can be minimized. Table IV. suggests some of the suitable dc references available from Analog Devices that are suitable for use with this range of current output DACs.

AMPLIFIER SELECTION

The primary requirement for the current-steering mode is an amplifier with low input bias currents and low input offset voltage. The input offset voltage of an op amp is multiplied by the variable gain (due to the code dependent output resistance of the DAC) of the circuit. A change in this noise gain between two adjacent digital fractions produces a step change in the output voltage due to the amplifier's input offset voltage. This output voltage change is superimposed upon the desired change in output between the two codes and gives rise to a differential linearity error, which if large enough could cause the DAC to be non-monotonic.
The input bias curent of an op amp also generates an offset at the voltage output as a result of the bias current flowing in the feedback resistor R_{FB}. M ost op amps have input bias currents low enough to prevent any significant errors in 12-Bit applications, however for 14-Bit applications some consideration should be given to selecting an appropriate amplifier.
Common mode rejection of the op amp is important in voltage switching circuits, since it produces a code dependent error at the voltage output of the circuit. M ost op amps have adequate common mode rejection for use at 8 -, 10 - and 12 -Bit resolution.
Provided the DAC switches are driven from true wideband low impedance sources ($\mathrm{V}_{\text {IN }}$ and $A G N D$) they settle quickly. Consequently, the slew rate and settling time of a voltage switching DAC circuit is determined largely by the output op amp. To obtain minimum settling time in this configuration, it is important to minimize capacitance

AD5450/AD5451/AD5452/AD5453

Table IV. Listing of suitable ADI Precision References recommended for use with AD5450/1/2/3 DACs.

Reference	Output Voltage	Initial Tolerance	Temperature Drift	0.1 Hz to 10 Hz noise	Package
ADR01	10 V	0.1\%	$3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$20 \mu \mathrm{~V}$ p-p	SC 70, TSOT, SOIC
AD R 02	5 V	0.1\%	$3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$10 \mu \vee \mathrm{p}-\mathrm{p}$	SC 70, TSOT, SOIC
AD R 03	2.5 V	0.2\%	$3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$10 \mu \mathrm{~V}$ p-p	SC 70, TSOT, SOIC
AD R 425	5V	0.04\%	$3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$3.4 \mu \mathrm{Vp}-\mathrm{p}$	M SOP, SOIC

Table V. Listing of some precision ADI Op Amps suitable for use with AD5450/1/2/3 DACs.

Part \#	Max Supply Voltage \mathbf{V}	$\mathbf{V}_{\mathbf{o s}}(\boldsymbol{m a x}) \boldsymbol{\mu} \mathbf{V} \mathbf{I}_{\mathbf{B}}(\boldsymbol{m a x}) \mathbf{n A}$	$\mathbf{G B P} \mathbf{M H z}$	Slew Rate $\mathbf{V} / \boldsymbol{\mu} \mathbf{s}$	$\mathbf{t}_{\text {SETTLE }}$ with AD5453	
OP97	± 20	25	0.1	0.9	0.2	
OP 1177 ± 18	60	2	1.3	0.7		
AD 8551 ± 6	5	0.05	1.5	0.4		

Table VI. Listing of some High Speed ADI Op Amps suitable for use with AD5450/1/2/3 DACs.

Part \#	Max Supply Voltage V	BW @ $\mathrm{A}_{\text {CL }}$ MHz	Slew Rate V/ $/$ s	t $_{\text {EETtLE }}$ with AD5453	$\mathrm{V}_{\text {os }}($ max $) \mu \mathrm{V}$	$\mathrm{I}_{\mathrm{B}}(\max) \mathrm{nA}$
AD 8065	± 12	145	180		1500	0.01
AD 8021	± 12	200	100		1000	1000
AD 8038	± 5	350	425		3000	0.75
AD 9631	± 5	320	1300		10000	7000

at the $\mathrm{V}_{\text {REF }}$ node (voltage output node in this application) of the DAC. This is done by using low inputs capacitance buffer amplifiers and careful board design.
M ost single supply circuits include ground as part of the analog signal range, which in turns requires an ampliferthat can handle rail to rail signals, there is a large range of single supply amplifiers available from Analog D evices.

PCB LAYOUT AND POWER SUPPLY DECOUPLING

In any circuit where accuracy is important, careful consideration of the power supply and ground return layout helps to ensure the rated performance. The printed circuit board on which the AD5426/AD5432/AD5443 is mounted should be designed so that the analog and digital sections are separated, and cofined to certain areas of the board. If the DAC is in a system where multiple devices require an AGND-to-DGND connection, the connection should be made at one point only. The star ground point should be established as close as possible to the device.
These DACs should have ample supply bypassing of 10 $\mu \mathrm{F}$ in parallel with $0.1 \mu \mathrm{~F}$ on the supply located as close to the package as possible, ideally right up against the device. The $0.1 \mu \mathrm{~F}$ capacitor should have low Effective Series Resistance (ESR) and Effective Series Inductance (ESI), like the common ceramic types that provide a low impedance path to ground at high frequencies, to handle transient currents due to internal logic switching. Low ESR $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum or electrolytic capacitors should also be applied at the supplies to minimize transient disturbance and filter out low frequency ripple.
Fast switching signals such as clocks should be shielded with digital ground to avoid radiating noise to other parts of the board, and should never be run near the reference inputs.

Avoid crossover of digital and analog signals. Traces on opposite sides of the board should run at right angles to each other. This reduces the effects of feedthrough through the board. A microstrip technique is by far the best, but not always possible with a doublesided board. In this technique, the component side of the board is dedicated to ground plane while signal traces are placed on the solder side.

It is good practice to employ compact, minimum lead length PCB layout design. Leads to the input should be as short as possible to minimize IR drops and stray inductance.
The PCB metal traces between $\mathrm{V}_{\text {REF }}$ and R_{FB} should also be matched to minimize gain error. To maximize on high frequency performance, the I-to-V amplifier should be located as close to the device as possible.

Overview of AD54xx devices

Part \#	Resolution	\#DACs	INL	$\mathrm{t}_{\mathbf{s}}$	Interface	Package	Features
AD 5403 ${ }^{1}$	8	2	± 0.25	20ns	Parallel	CP-40	10 MHz BW, 17 ns CS Pulse Width, 4Quadrant Multiplying Resistors
AD $5410{ }^{1}$	8	1	± 0.25	20 ns	Serial	RU-16	10 MHz BW, 50 MHz Serial, 4- Quadrant Multiplying Resistors
AD $5413{ }^{1}$	8	2	± 0.25	20ns	Serial	RU-24	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ Serial, 4- Quadrant Multiplying Resistors
AD 5424	8	1	± 0.25	60ns	Parallel	RU-16, CP-20	$10 \mathrm{MHz} \mathrm{BW}$,
AD 5425	8	1	± 0.25	100ns	Serial	R M -10	Byte Load, $10 \mathrm{MHz} \mathrm{BW}$,50 MHz Serial
AD 5426	8	1	± 0.25	100 ns	Serial	R M -10	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ Serial
AD $5428{ }^{2}$	8	2	± 0.25	60 ns	Parallel	RU-20	$10 \mathrm{MHz} \mathrm{BW}, 17 \mathrm{~ns} \mathrm{CS} \mathrm{Pulse} \mathrm{Width}$
AD $5429{ }^{2}$	8	2	± 0.25	100ns	Serial	RU-10	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ Serial
AD $5450{ }^{2}$	8	1	± 0.25	100 ns	Serial	RJ-8	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ Serial
AD $5404{ }^{1}$	10	2	± 0.5	25ns	Parallel	CP-40	10 MHz BW, 17 ns CS Pulse Width, 4Quadrant Multiplying Resistors
AD $5411{ }^{1}$	10	1	± 0.5	25ns	Serial	RU-16	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ Serial, 4- Quadrant Multiplying Resistors
AD $5414{ }^{1}$	10	2	± 0.5	25ns	Serial	RU-24	10 MHz BW, 50 MHz Serial, 4- Quadrant Multiplying Resistors
A D 5432	10	1	± 0.5	110ns	Serial	R M -10	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ Serial
AD 5433	10	1	± 0.5	70 ns	Parallel	RU-20, CP-20	$10 \mathrm{MHz} \mathrm{BW}, 17 \mathrm{~ns} \mathrm{CS} \mathrm{Pulse} \mathrm{Width}$
AD $5439{ }^{2}$	10	2	± 0.5	110 ns	Serial	RU-16	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ Serial
AD $5440{ }^{2}$	10	2	± 0.5	70ns	Parallel	RU-24	$10 \mathrm{MHz} \mathrm{BW}, 17 \mathrm{~ns} \mathrm{CS} \mathrm{Pulse} \mathrm{Width}$
AD 5451 ${ }^{2}$	10	1	± 0.25	110ns	Serial	RJ-8	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ Serial
AD 5405 ${ }^{2}$	12	2	± 1	120ns	Parallel	CP-40	10 MHz BW, 17 ns CS Pulse Width, 4Quadrant Multiplying Resistors
AD $5412{ }^{1}$	12	1	± 1	160 ns	Serial	RU-16	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ Serial, 4- Quadrant Multiplying Resistors
AD 5415 ${ }^{2}$	12	2	± 1	160 ns	Serial	RU-24	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ Serial, 4- Quadrant Multiplying Resistors
A D 5443	12	1	± 1	160 ns	Serial	R M -10	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ Serial
AD 5445	12	1	± 1	120 ns	Parallel	RU-20, CP-20	$10 \mathrm{MHz} \mathrm{BW}$,
AD $5447{ }^{2}$	12	2	± 1	120 ns	Parallel	RU-24	$10 \mathrm{MHz} \mathrm{BW}, 17 \mathrm{~ns} \mathrm{CS} \mathrm{Pulse} \mathrm{Width}$
AD $5449{ }^{2}$	12	2	± 1	160 ns	Serial	RU-16	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ Serial
AD 5452^{2}	12	1	± 0.5	160 ns	Serial	RJ-8, RM - 8	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ Serial
AD $5453{ }^{2}$	14	1	± 2	180ns	Serial	RJ-8, RM-8	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ Serial

${ }^{1}$ Future parts, contact factory for availability
${ }^{2}$ In development, contact factory for availability

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).
8 Lead TSOT
(UJ-8)
8 Lead MSOP
(RM-8)

[^0]: *US Patent Number 5,689,257
 SPI and QSPI are trademarks of M otorola, Inc.
 MICROWIRE is a trademark of N ational Semiconductor Corporation.

