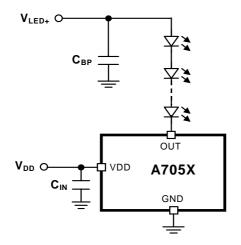


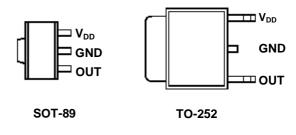
A705 200mA ~ 300mA Advanced Current Regulator


DESCRIPTION

The A705 is a low dropout current regulator rated for 210mA, 230mA, 250mA, 270mA, and 290mA constant sink current. The low quiescent current and low dropout voltage are achieved by advanced Bi-CMOS process.

FEATURES

- Only bypass capacitor is required.
- 210/230/250/270/290mA constant sink current.
- Output short / open circuit protection.
- Low dropout voltage.
- Low quiescent current.
- Supply voltage range 2.7V ~ 12V.
- 2KV HBM ESD protection.
- Advanced Bi-CMOS process.
- SOT-89 and TO-252 package available.

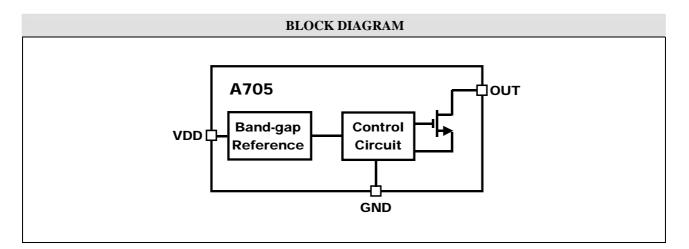

TYPICAL APPLICATION CIRCUIT

APPLICATIONS

- Power LED Driver
- LED Cap-Lamp

PACKAGE PIN OUT

(Top View)


ORDER INFORMATION						
Output Current	N –	SOT-89	S	TO-252		
		3-pin	8	3-pin		
$200 mA \sim 220 mA$		A705NFT-210		A705SFT-210		
$220 mA \sim 240 mA$		A705NFT-230		A705SFT-230		
$240 mA \sim 260 mA$		A705NFT-250		A705SFT-250		
$260 mA \sim 280 mA$		A705NFT-270		A705SFT-270		
$280 mA \sim 300 mA$		A705NFT-290		A705SFT-290		

1

ABSOLUTE MAXIMUM RATINGS (Note)

Input Voltage, V _{DD}	-0.3V to 13.2V
Output Voltage, V _{OUT}	-0.3V to 17V
Maximum Junction Temperature, T _J	150°C
Storage Temperature Range	-40°C to 150°C
Lead Temperature (Soldering, 10 seconds)	260°C
Note: Exceeding these ratings could cause damage to the device. All voltages are wit	h respect to Ground

Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground Currents are positive into, negative out of the specified terminal.

PIN DESCRIPTION				
Pin Name	Pin Function			
V _{DD}	Power supply.			
OUT	Output pins. Connected to load.			
GND	Ground.			

THERMAL RESISTANCE

Pa	ickage	$\theta_{JT}(^{\circ}C/W)$	Note: $T_J = T_C + (P_D \times \theta_{JT})$ θ_{JT} : Thermal Resistance - Junction to Tab.
Ν	SOT-89	35	T _c : Case (Tab) Temperature. T _J : Junction Temperature.
S	TO-252	7	P _D : Power Consumption.

RECOMMENDED OPERATING CONDITIONS							
Parameter	Symbol	Min	Тур	Max	Unit		
Supply Voltage	V_{DD}	2.7		12	V		
Output Sink Current	I _{OUT}			260	mA		
Operating Free-air Temperature Range	T _A	-40		+85	°C		

DC ELECTRICAL CHARACTERISTICS

 V_{DD} =3.7V, T_A=25°C, No Load (Unless otherwise noted)

Parameter	Symbol	Condition		Min	Тур	Max	Unit	Apply Pin
			A705P	200	210	220		
			A705Q	220	230	240		
Output Sink Current	I _{OUT}	V _{OUT} =0.2V	A705R	240	250	260	mA	
			A705S	260	270	280		
			A705T	280	290	300		OUT
Load Regulation		$V_{OUT}=0.2V$ to $3V$				2	mA/V	
Line Regulation		V_{DD} = 3V to 12V, V _{OUT} =0.2V				2	mA/V	
Output Dropout Voltage (Note)	V _{OUTL}				120		mV	
Supply Current Consumption	I _{DD}				200		uA	VDD

Note: Output dropout voltage: 90% x I_{OUT} @ V_{OUT}=200mV

APPLICATION INFORMATION

The Maximum Power Dissipation on Regulator:

 $P_{D(MAX)} = V_{OUT(MAX)} \times I_{OUT(NOM)} + V_{IN(MAX)} \times I_Q$

 $V_{OUT(MAX)}$ = the maximum voltage on output pin; $I_{OUT(NOM)}$ = the nominal output current; I_Q = the quiescent current the regulator consumes at $I_{OUT(MAX)}$; $V_{IN(MAX)}$ = the maximum input voltage.

Thermal Consideration:

The A705 has internal power and thermal limiting circuitry designed to protect the device under overload conditions. However, maximum junction temperature ratings should not be exceeded under continuous normal load conditions. The thermal protection circuit of A705 prevents the device from damage due to excessive power dissipation. When the device temperature rises to approximately 150°C, the regulator will be turned off. When power consumption is over about 700mW (SOT-89 package, at T_A =70°C) or 1000mW (TO-252 package, at T_A =70°C), additional heat sink is required to control the junction temperature below 120°C.

The junction temperature is:

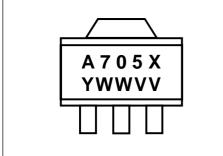
 $T_J = P_D (\theta_{JT} + \theta_{CS} + \theta_{SA}) + T_A$

P_D : Dissipated power.

 $\theta_{\rm JT}~$; Thermal resistance from the junction to the mounting tab of the package.

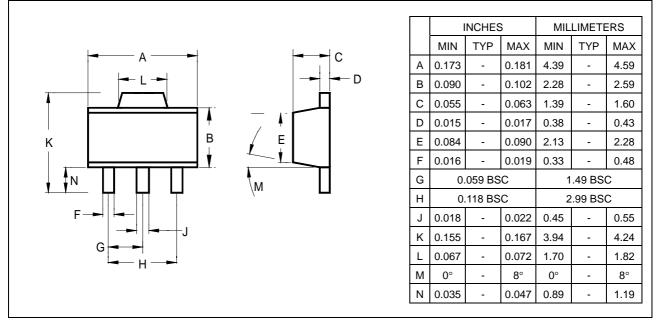
 θ_{CS} : Thermal resistance through the interface between the IC and the surface on which it is mounted. (typically, $\theta_{CS} < 1.0^{\circ}$ C/W)

 θ_{SA} : Thermal resistance from the mounting surface to ambient (thermal resistance of the heat sink).

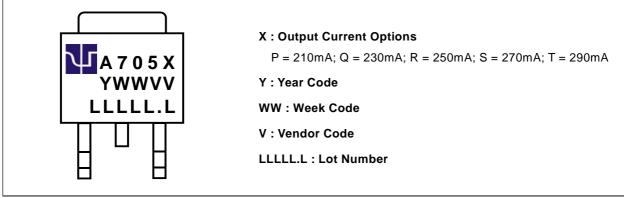

If PC Board copper is going to be used as a heat sink, below table can be used to determine the appropriate size of copper foil required. For multi-layered PCB, these layers can also be used as a heat sink. They can be connected with several through-hole vias.

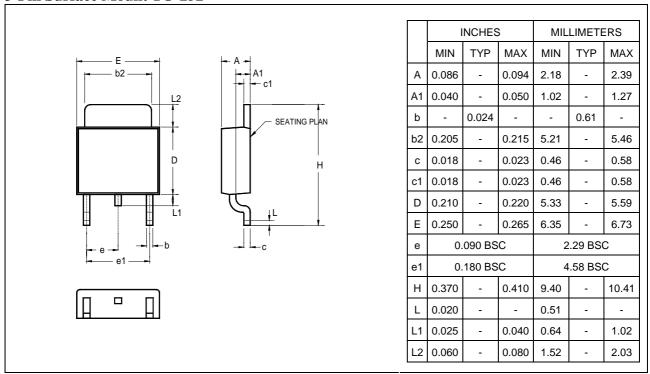
PCB θ sa (°C/W)	59	45	38	33	27	24	21
PCB heat sink size (mm ²)	500	1000	1500	2000	3000	4000	5000

A705


PACKAGE

Top Marking for SOT-89




3-Pin Surface Mount SOT-89

Top Marking for TO-252

3-Pin Surface Mount TO-252

A705

VADDtek

IMPORTANT NOTICE

ADDtek reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. ADDtek integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of ADDtek products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

ADDtek assumes to no liability to customer product design or application support. ADDtek warrants the performance of its products to the specifications applicable at the time of sale.

ADDtek Corp. 9F, No. 20, Sec. 3, Bade Rd., Taipei, Taiwan, 105 TEL: 2-25700299 FAX: 2-25700196

Copyright © 2007 ADDtek Corp.