Freescale Semiconductor Technical Data

MM908E624 Internal Rev 4.0, 12/2004

Integrated Triple High-Side Switch with Embedded MCU and LIN Serial Communication for Relay Drivers

The 908E624 is an integrated single-package solution that includes a high-performance HC08 microcontroller with a *SMARTMOS*[™] analog control IC. The HC08 includes flash memory, a timer, enhanced serial communications interface (ESCI), an analog-to-digital converter (ADC), serial peripheral interface (SPI) (only internal), and an internal clock generator module. The analog control die provides three high-side outputs with diagnostic functions, voltage regulator, watchdog, operational amplifier, and local interconnect network (LIN) physical layer.

The single-package solution, together with LIN, provides optimal application performance adjustments and space-saving PCB design. It is well suited for the control of automotive high-current motors applications using relays (e.g., window lifts, fans, and sun roofs).

Features

- High-Performance M68HC908EY16 Core
- 16 K Bytes of On-Chip Flash Memory
- 512 Bytes of RAM
- Internal Clock Generator Module
- Two 16-Bit, 2-Channel Timers
- 10-Bit Analog-to-Digital Converter (ADC)
- LIN Physical Layer Interface
- Low Dropout Voltage Regulator
- Three High-Side Outputs
- Two Wake-Up Inputs
- 16 Microcontroller I/Os

TRIPLE HIGH-SIDE SWITCH WITH EMBEDDED MCU AND LIN

ORDERING INFORMATION					
Device Temperature Range (T _A)		Package			
MM908E624ACDWB/R	-40°C to 85°C	54 SOICW			

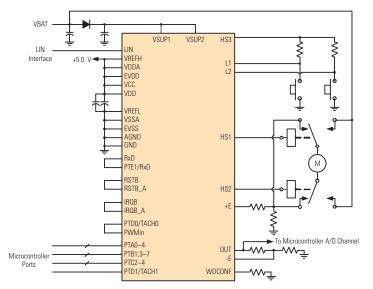
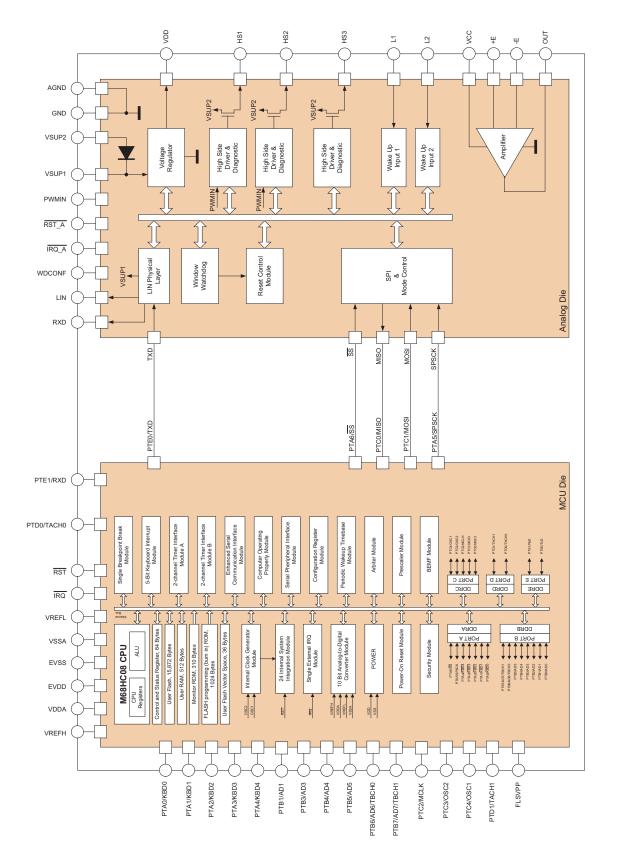
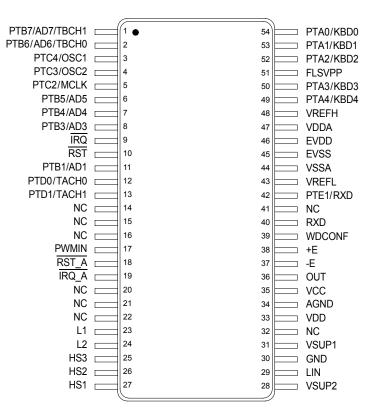



Figure 1. 908E624 Simplified Application Diagram

This document contains certain information on a new product. Specifications and information herein are subject to change without notice. © Freescale Semiconductor, Inc., 2004. All rights reserved.



INTERNAL BLOCK DIAGRAM

908E624

Figure 2. 908E624 Simplified Internal Block

TERMINAL CONNECTIONS

Figure 3. Terminal Connections

Table 1. Terminal Definitions

A functional description of each terminal can be found in the Functional Terminal Description section beginning on page 17.

Die	Terminal	Terminal Name	Formal Name	Definition
MCU	1 2 6 7 8 11	PTB7/AD7/TBCH1 PTB6/AD6/TBCH0 PTB5/AD5 PTB4/AD4 PTB3/AD3 PTB1/AD1	Port B I/Os	These terminals are special-function, bidirectional I/O port terminals that are shared with other functional modules in the MCU.
MCU	3 4 5	PTC4/OSC1 PTC3/OSC2 PTC2/MCLK	Port C I/Os	These terminals are special-function, bidirectional I/O port terminals that are shared with other functional modules in the MCU.
MCU	9	ĪRQ	External Interrupt Input	This terminal is an asynchronous external interrupt input terminal.
MCU	10	RST	External Reset	This terminal is bidirectional, allowing a reset of the entire system. It is driven low when any internal reset source is asserted.
MCU	12 13	PTD0/TACH0 PTD1/TACH1	Port D I/Os	These terminals are special-function, bidirectional I/O port terminals that are shared with other functional modules in the MCU.
_	14, 15, 16, 20, 21, 22, 32, 41	NC	No Connect	Not connected.
MCU	42	PTE1/RXD	Port E I/O	This terminal is a special-function, bidirectional I/O port terminal that can is shared with other functional modules in the MCU.

Table 1. Terminal Definitions (continued)

A functional description of each terminal can be found in the Functional Terminal Description section beginning on page 17.

Die	Terminal	Terminal Name	Formal Name	Definition
MCU	43 48	VREFL VREFH	ADC References	These terminals are the reference voltage terminals for the analog-to- digital converter (ADC).
MCU	44 47	VSSA VDDA	ADC Supply Terminals	These terminals are the power supply terminals for the analog-to-digital converter.
MCU	45 46	EVSS EVDD	MCU Power Supply Terminals	These terminals are the ground and power supply terminals, respectively. The MCU operates from a single-power supply.
MCU	49 50 52 53 54	PTA4/KBD4 PTA3/KBD3 PTA2/KBD2 PTA1/KBD1 PTA0/KBD0	Port A I/Os	These terminals are special-function, bidirectional I/O port terminals that are shared with other functional modules in the MCU.
MCU	51	FLSVPP	Test Terminal	For test purposes only. Do not connect in the application.
Analog	17	PWMIN	Direct High-Side Control Input	This terminal allows the enabling and PWM control of the high-side HS1 and HS2 terminals.
Analog	18	RST_A	Internal Reset Output	This terminal is the reset output terminal of the analog die.
Analog	19	IRQ_A	Internal Interrupt Output	This terminal is the interrupt output terminal of the analog die indicating errors or wake-up events.
Analog	23 24	L1 L2	Wake-Up Inputs	These terminals are the wake-up inputs of the analog chip.
Analog	25 26 27	HS3 HS2 HS1	High-Side Output	These output terminals are low $R_{DS(ON)}$ high-side switches.
Analog	31 28	VSUP1 VSUP2	Power Supply Terminals	These terminals are device power supply terminals.
Analog	29	LIN	LIN Bus	This terminal represents the single-wire bus transmitter and receiver.
Analog	30 34	GND AGND	Power Ground Terminals	These terminals are device power ground connections.
Analog	33	VDD	Voltage Regulator Output	The +5.0 V voltage regulator output terminal is intended to supply the embedded microcontroller.
Analog	35	VCC	Amplifier Power Supply	This terminal is the single +5.0 V power supply for the operational amplifier.
Analog	36	OUT	Amplifier Output	This terminal is the output of the operational amplifier.
Analog	37 38	-E +E	Amplifier Inputs	These terminals are the amplifier inverted and non-inverted inputs.
Analog	39	WDCONF	Watchdog Configuration Terminal	This input terminal is for configuration of the watchdog period and allows the disabling of the watchdog.
Analog	40	RXD	LIN Transceiver Output	This terminal is the output of LIN transceiver.

MAXIMUM RATINGS

Table 2. Maximum Ratings

All voltages are with respect to ground unless otherwise noted. Exceeding limits on any terminal may cause permanent damage to the device.

Rating	Symbol	Value	Unit
Electrical Ratings			
Supply Voltage Analog Chip Supply Voltage under Normal Operation (Steady-State) Analog Chip Supply Voltage under Transient Conditions MCU Chip Supply Voltage	V _{SUP(SS)} V _{SUP(PK)} V _{DD}	-0.3 to 27 -0.3 to 40 -0.3 to 5.5	V
Input Terminal Voltage Analog Chip Microcontroller Chip	V _{IN(ANALOG)} V _{IN(MCU)}	-0.3 to V _{DD} +0.3 V _{SS} -0.3 to V _{DD} +0.3	V
Maximum Microcontroller Current per Terminal All Terminals except VDD, VSS, PTA0:PTA6, PTC0:PTC1 PTA0:PTA6, PTC0:PTC1 Terminals	I _{PIN(1)} I _{PIN(2)}	±15 ±25	mA
Maximum Microcontroller VSS Output Current	I _{MVSS}	100	mA
Maximum Microcontroller VDD Input Current	I _{MVDD}	100	mA
Current Sense Amplifier Maximum Input Voltage, +E, -E Terminals Maximum Input Current, +E, -E Terminals Maximum Output Voltage, OUT Terminal Maximum Output Current, OUT Terminal	V _{+E-E} I _{+E-E} V _{OUT} I _{OUT}	-0.3 to 7.0 ±20 -0.3 to V _{CC} +0.3 ±20	V mA V mA
LIN Supply Voltage Normal Operation (Steady-State) Transient Input Voltage (per ISO7637 Specification) and with External Components (<u>Figure 4</u> , page 15)	V _{BUS(SS)} V _{BUS(PK)}	-18 to 40 -150 to 100	V
L1 and L2 Terminal Voltage Normal Operation with a 33 kΩ resistor (Steady-State) Transient Input Voltage (per ISO7637 Specification) and with External Components (<u>Figure 4</u> , page 15)	V _{WAKE(SS)} V _{WAKE(PK)}	-18 to 40 -100 to 100	V
ESD Voltage Human Body Model ⁽¹⁾ Machine Model ⁽²⁾ Charge Device Model ⁽³⁾	V _{ESD1} V _{ESD2} V _{ESD3}	±2000 ±100 ±500	V

Notes

1. ESD1 testing is performed in accordance with the Human Body Model (C_{ZAP} = 100 pF, R_{ZAP} = 1500 Ω).

2. ESD2 testing is performed in accordance with the Machine Model (C_{ZAP} = 200 pF, R_{ZAP} = 0 Ω).

3. ESD3 testing is performed in accordance with Charge Device Model, Robotic (C_{ZAP} = 4.0 pF).

Table 2. Maximum Ratings (continued)

All voltages are with respect to ground unless otherwise noted. Exceeding limits on any terminal may cause permanent damage to the device.

Rating	Symbol	Value	Unit
Thermal Ratings			
Operating Ambient Temperature	T _A	-40 to 85	°C
Operating Junction Temperature ⁽⁴⁾ Analog MCU	T _J (ANALOG) T _{J(MCU)}	-40 to 150 -40 to 125	°C °C
Storage Temperature	T _{STG}	-40 to 150	°C
Peak Package Reflow Temperature During Solder Mounting ⁽⁵⁾	T _{SOLDER}	245	°C
Thermal Resistance, Junction to Ambient ^{(6), (7)}	R _{θJA}	36	°C/W

Notes

4. Die temperature of analog and MCU is linked via the package. High temperature on analog die can lead to a high MCU temperature.

5. Terminal soldering temperature is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause malfunction or permanent damage to the device.

6. All power outputs ON and dissipating equal power.

7. Per JEDEC JESD51-2 at natural convection, still air condition; and 2s2p thermal test board per JEDEC JESD51-7.

908E624

STATIC ELECTRICAL CHARACTERISTICS

Table 3. Static Electrical Characteristics

All characteristics are for the analog chip only. Refer to the 68HC908EY16 datasheet for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40°C \leq T_J \leq 125°C unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25°C under nominal conditions unless otherwise noted.

Characteristic	Symbol	Min	Тур	Мах	Unit
Supply Voltage Range					•
Nominal Operating Voltage	V _{SUP}	5.5		18	V
Functional Operating Voltage ⁽⁸⁾	V _{SUPOP}	_	_	27	V
Supply Current Range		•			
Normal Mode ⁽⁹⁾	I _{RUN}				mA
V _{SUP} = 13.5 V, Analog Chip in Normal Mode, MCU Operating Using Internal Oscillator at 32 MHz (8.0 MHz Bus Frequency), SPI, ESCI, ADC Enabled	I _{STOP}	_	20	_	
Stop Mode ^{(9), (10)}		_	60	75	μA
$V_{SUP} = 13.5 V$	I _{SLEEP}				
Sleep Mode ^{(9), (10)}		_	35	45	μA
V _{SUP} = 13.5 V					
Digital Interface Ratings (Analog Die)					
Output Terminal RST_A					
Low-State Output Voltage (I _{OUT} = -1.5 mA)	V _{OL}	—	_	0.4	V
High-State Output Current (V _{OUT} > 3.5 V)	I _{ОН}	—	250	—	μA
Pulldown Current Limitation	I _{OL_MAX}	-1.5	—	-8.0	mA
Output Terminal IRQ_A					V
Low-State Output Voltage (I _{OUT} = -1.5 mA)	V _{OL}	—	_	0.4	
High-State Output Voltage (I _{OUT} = 250 μA)	V _{OH}	3.85	—	—	
Output Terminal RXD					
Low-State Output Voltage (I _{OUT} = -1.5 mA)	V _{OL}	—	_	0.4	V
High-State Output Voltage (I _{OUT} = 250 μA)	V _{OH}	3.85	_	_	V
Capacitance ⁽¹¹⁾	C _{IN}	—	4.0	—	pF
Input Terminal PWMIN					1
Input Logic Low Voltage	V _{IL}	_	_	1.5	V
Input Logic High Voltage	V _{IH}	3.5	—	—	V
Input Current	I _{IN}	-10	—	10	μA
Capacitance ⁽¹¹⁾	C _{IN}	—	4.0	—	pF
Terminal TXD, SS–Pullup Current	I _{PULLUP}		40		μA

Notes

8. Device is fully functional. All functions are operating. Overtemperature may occur.

9. Total current (I_{VSUP1} + I_{VSUP2}) measured at GND terminal.

10. Stop and Sleep mode current will increase if $V_{\mbox{\scriptsize SUP}}$ exceeds 15 V.

11. This parameter is guaranteed by process monitoring but is not production tested.

All characteristics are for the analog chip only. Refer to the 68HC908EY16 datasheet for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40°C \leq T_J \leq 125°C unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25°C under nominal conditions unless otherwise noted.

Characteristic	Symbol	Min	Тур	Мах	Unit
System Resets and Interrupts	· · ·				
Low-Voltage Reset (LVR)					V
Threshold	V _{LVRON}	3.6	4.0	4.4	
Low-Voltage Interrupt (LVI)					V
Threshold	V _{LVI}	5.7	6.0	6.6	
Hysteresis	V _{LVI_HYS}	—	1.0	—	
High-Voltage Interrupt (HVI)					
Threshold	V _{HVI}	18	19.25	20.5	V
Hysteresis	V _{HVI_HYS}	_	220	—	mV
Voltage Regulator ⁽¹²⁾					
Normal Mode Output Voltage	V _{DDRUN}				V
2.0 mA < I _{DD} < 50 mA, 5.5 V < V _{SUP} < 27 V		4.75	5.0	5.25	
Normal Mode Output Current Limitation (13)	I _{DDRUN}	50	110	200	mA
Dropout Voltage ⁽¹⁴⁾	V _{DDDROP}				V
I _{DD} = 50 mA		_	0.1	0.2	
Stop Mode Output Voltage ⁽¹⁵⁾	V _{DDSTOP}	4.75	5.0	5.25	V
Stop Mode Regulator Current Limitation	IDDSTOP	4.0	8.0	14	mA
Line Regulation					mV
Normal Mode, 5.5 V < V _{SUP} < 27 V, I_{DD} = 10 mA	LR _{RUN}	_	20	150	
Stop Mode, 5.5 V < V _{SUP} < 27 V, I _{DD} = 2.0 mA	LR _{STOP}	—	10	100	
Load Regulation					mV
Normal Mode, 1.0 mA < I _{DD} < 50 mA, V _{SUP} = 18 V	LD _{RUN}	_	40	150	
Stop Mode, 1.0 mA < I $_{DD}$ < 5 mA, V $_{SUP}$ = 18 V	LD _{STOP}	—	40	150	
Overtemperature Pre-Warning (Junction) (16)	T _{PRE}	120	135	160	°C
Thermal Shutdown Temperature (Junction) (16)	T _{SD}	155	170		°C
Temperature Threshold Difference	Δ_{TSD} -TPRE				°C
T _{SD} -T _{PRE}		20	30	45	

Notes

12. Specification with external capacitor 1.0 μ F < C < 10 μ F and 200 m Ω \leq ESR \leq 1.0 Ω . Capacitor value up to 47 μ F can be used.

13. Total VDD regulator current. A 5.0 mA current for operational amplifier is included. Digital output supplied from VDD.

14. Measured when voltage has dropped 100 mV below its nominal value.

15. When switching from Normal to Stop mode or from Stop mode to Normal mode, the output voltage can vary within the output voltage specification.

16. This parameter is guaranteed by process monitoring but not production tested

All characteristics are for the analog chip only. Refer to the 68HC908EY16 datasheet for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40°C \leq T_J \leq 125°C unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25°C under nominal conditions unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
Window Watchdog Configuration Terminal (WDCONF)					
External Resistor Range	R _{EXT}	10	_	100	kΩ
Watchdog Period Accuracy with External Resistor (Excluding Resistor Accuracy) ⁽¹⁷⁾	WD _{CACC}	-15	_	15	%
LIN Physical Layer					
LIN Transceiver Output Level					V
Recessive State, TXD HIGH, I _{OUT} = 1.0 μA	V _{LIN_REC}	V _{SUP} -1	—	—	
Dominant State, TXD LOW, 500 Ω External Pullup Resistor	$V_{\text{LIN}_{\text{DOM}}}$	—	—	1.4	
Normal Mode Pullup Resistor to V _{SUP}	R _{PU}	20	30	60	kΩ
Stop, Sleep Mode Pullup Current Source	I _{PU}	_	2.0	_	μA
Output Current Shutdown Threshold	I _{OV-CUR}	50	75	150	mA
Output Current Shutdown Delay	I _{OV-DELAY}	—	10	_	μs
Leakage Current to GND	I _{BUS}				μA
VSUP Disconnected, V _{BUS} at 18 V		—	1.0	10	
Recessive State, V_{SUP} 8.0 V to 18 V, V_{BUS} 8.0 V to 18 V, $V_{BUS} \ge V_{SUP}$		0	3.0	20	
GND Disconnected, $V_{GND} = V_{SUP}$, V_{BUS} at -18 V		-1.0	—	1.0	
LIN Receiver					V _{SUP}
Receiver Threshold Dominant	V _{BUS_DOM}	—	—	0.4	
Receiver Threshold Recessive	V _{BUS_REC}	0.6	—	—	
Receiver Threshold Center	V _{BUS_CNT}	0.475	0.5	0.525	
Receiver Threshold Hysteresis	V _{BUS_HYS}	—	—	0.175	

Notes

17. Watchdog timing period calculation formula: P_{WD} = 0.991 * R_{EXT} +0.648 (R_{EXT} in k Ω and P_{WD} in ms).

All characteristics are for the analog chip only. Refer to the 68HC908EY16 datasheet for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40°C \leq T_J \leq 125°C unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25°C under nominal conditions unless otherwise noted.

Characteristic	Symbol	Min	Тур	Мах	Unit
High-Side Outputs HS1 and HS2					
Switch On Resistance	R _{DS(ON)}				Ω
T_J = 25°C, I _{LOAD} = 150 mA, V _{SUP} > 9.0 V		—	2.0	2.5	
T_J = 125°C, I _{LOAD} = 150 mA, V _{SUP} > 9.0 V		—	—	4.5	
T_{J} = 125°C, I_{LOAD} = 120 mA, 5.5 V < V_{SUP} > 9.0 V		—	3.0	—	
Output Current Limit	I _{LIM}	300	—	600	mA
Overtemperature Shutdown ^{(18),} ⁽¹⁹⁾	T _{HSSD}	155	—	190	°C
Leakage Current	I _{LEAK}	—	—	10	μΑ
High-Side Output HS3	·		·		
Switch On Resistance	R _{DS(ON)}				Ω
T_J = 25°C, I _{LOAD} = 50 m A, V _{SUP} > 9.0 V		_	—	7.0	
T_J = 125°C, I _{LOAD} = 50 mA, V _{SUP} > 9.0 V		—	—	10	
T_{J} = 125°C, I _{LOAD} = 30 mA, 5.5 V < V _{SUP} > 9.0 V		—	—	14	
Output Current Limitation	I _{LIM}	60	100	200	mA
Overtemperature Shutdown ^{(18),} ⁽¹⁹⁾	T _{HSSD}	155	—	190	°C
Leakage Current	I _{LEAK}	—	—	10	μA
Output Clamp Voltage	V _{CL}				V
I _{OUT} = -100 mA		-6.0	—	—	

Notes

18. This parameter is guaranteed by process monitoring but it is not production tested

19. When overtemperature occurs, switch is turned off and latched off. Flag is set in SPI.

All characteristics are for the analog chip only. Refer to the 68HC908EY16 datasheet for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40°C \leq T_J \leq 125°C unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25°C under nominal conditions unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
Sense Current Amplifier				•	
Rail to Rail Input Voltage	V _{IMC}	-0.1	—	V _{CC} +0.1	V
Output Voltage Range					V
Output Current ±1.0 mA	V _{OUT1}	0.1	_	V _{CC} -0.1	
Output Current ±5.0 mA	V _{OUT2}	0.3	_	V _{CC} -0.3	
Input Bias Current	Ι _Β	_	—	250	nA
Input Offset Current	Ι _Ο	-100	—	100	nA
Input Offset Voltage	V _{IO}	-25	—	25	mV
Supply Voltage Rejection Ratio ⁽²⁰⁾	SVR	60	—	_	dB
Common Mode Rejection Ratio ⁽²⁰⁾	CMR	70	_	-	dB
Gain Bandwidth ⁽²⁰⁾	GBP	1.0	_	_	MH
Slew Rate	SR	0.5	—	_	V/μ
Phase Margin (for Gain = 1, Load 100 pF//5.0 k $\Omega^{(20)}$	РНМО	40	_	-	٥
Open Loop Gain	OLG	—	85	-	dB
L1 and L2 Inputs					
Negative Switching Threshold	V _{THN}				V
5.5 V < V _{SUP} < 6.0 V		2.0	2.5	3.0	
6.0 V < V _{SUP} < 18 V		2.5	3.0	3.5	
18 V < V _{SUP} < 27 V		2.7	3.2	3.7	
Positive Switching Threshold	V _{THP}				V
5.5 V < V _{SUP} < 6.0 V		2.7	3.3	3.8	
6.0 V < V _{SUP} < 18 V		3.0	4.0	4.5	
18 V < V _{SUP} < 27 V		3.5	4.2	4.7	
Hysteresis	V _{HYST}				V
5.5 V < V _{SUP} < 27 V		0.5	—	1.3	

 I_{IN}

-10

-0.2 V < V_{IN} < 40 V

Input Current

Notes

20. This parameter is guaranteed by process monitoring but is not production tested.

μΑ

10

DYNAMIC ELECTRICAL CHARACTERISTICS

Table 4. Dynamic Electrical Characteristics

All characteristics are for the analog chip only. Please refer to the 68HC908EY16 datasheet for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40°C \leq T_J \leq 125°C unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25°C under nominal conditions unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
LIN Physical Layer	·				
Driver Characteristics for Normal Slew Rate ^{(21), (22)}					
Dominant Propagation Delay TXD to LIN	t _{DOM-MIN}	—	—	50	μs
Dominant Propagation Delay TXD to LIN	t _{DOM-MAX}	—	_	50	μs
Recessive Propagation Delay TXD to LIN	t _{REC-MIN}	—	_	50	μs
Recessive Propagation Delay TXD to LIN	t _{REC-MAX}	—	_	50	μs
Propagation Delay Symmetry: t _{DOM-MIN} - t _{REC-MAX}	dt1	-10.44		—	μs
Propagation Delay Symmetry: t _{DOM-MAX} - t _{REC-MIN}	dt2	_	_	11	μs
Driver Characteristics for Slow Slew Rate ^{(21), (23)}	·				•
Dominant Propagation Delay TXD to LIN	t _{DOM-MIN}	—	_	100	μs
Dominant Propagation Delay TXD to LIN	t _{DOM-MAX}	—	_	100	μs
Recessive Propagation Delay TXD to LIN	t _{REC-MIN}	—	_	100	μs
Recessive Propagation Delay TXD to LIN	t _{REC-MAX}	_	_	100	μs
Propagation Delay Symmetry: t _{DOM-MIN} - t _{REC-MAX}	dt1s	-22	-	_	μs
Propagation Delay Symmetry: t _{DOM-MAX} - t _{REC-MIN}	dt2s	_	_	23	μs
Driver Characteristics for Fast Slew Rate					
LIN High Slew Rate (Programming Mode)	SR _{FAST}	—	15	_	V/µs
Receiver Characteristics and Wake-Up Timings					
Receiver Dominant Propagation Delay (24)	t _{RL}	—	3.5	6.0	μs
Receiver Recessive Propagation Delay (24)	t _{RH}	—	3.5	6.0	μs
Receiver Propagation Delay Symmetry	t _{R-SYM}	-2.0	_	2.0	μs
Bus Wake-Up Deglitcher	t _{PROP} WL	35		80	μs
Bus Wake-Up Event Reported ⁽²⁵⁾	twake	_	20	_	μs

Notes

V_{SUP} from 7.0 V to 18 V, bus load R0 and C0 1.0 nF/1.0 kΩ, 6.8 nF/660 Ω, 10 nF/500 Ω. Measurement thresholds: 50% of TXD signal to LIN signal threshold defined at each parameter.

22. See Figure 6, page 15.

23. See <u>Figure 7</u>, page 16.

24. Measured between LIN signal threshold V_{IL} or V_{IH} and 50% of RXD signal.

25. t_{WAKE} is typically 2 internal clock cycles after LIN rising edge detected. See Figure 8 and Figure 9, page 16. In Sleep mode the V_{DD} rise time is strongly dependent upon the decoupling capacitor at VDD terminal.

All characteristics are for the analog chip only. Please refer to the 68HC908EY16 datasheet for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40°C \leq T_J \leq 125°C unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25°C under nominal conditions unless otherwise noted.

	<u> </u>		-		
Characteristic	Symbol	Min	Тур	Max	Unit
SPI Interface Timing					
SPI Operating Recommended Frequency	f _{SPIOP}	0.25	—	4.0	MHz
L1 AND L2 INPUTS					
Wake-Up Filter Time ⁽²⁶⁾	t _{WUF}	8.0	20	38	μs
Window Watchdog Configuration Terminal (WDCONF)					
Watchdog Period	P _{WD}				ms
External Resistor R _{EXT} = 10 kΩ (1%)		—	10.558	—	
External Resistor R _{EXT} = 100 k Ω (1%)		—	99.748	—	
Without External Resistor R _{EXT} (WDCONF Terminal Open)		97	150	205	
State Machine Timing					
Reset Low-Level Duration after V _{DD} High	t _{RST}	0.65	1.0	1.35	ms
Interrupt Low-Level Duration	t _{INT}	7.0	10	13	μs
Normal Request Mode Timeout	NR _{TOUT}	97	150	205	ms
Delay Between SPI Command and HS1/HS2/HS3 Turn On ^{(27), (28)}	t _{S-HSON}	—	3.0	10	μs
Delay Between SPI Command and HS1/HS2/HS3 Turn Off ^{(27), (28)}	t _{S-HSOFF}	—	3.0	10	μs
Delay Between Normal Request and Normal Mode After W/D Trigger Command $^{\rm (29)}$	t _{S-NR2N}	6.0	35	70	μs
Delay Between $\overline{\rm SS}$ Wake-Up ($\overline{\rm SS}$ LOW to HIGH) and Normal Request Mode (VDD On and Reset High)	t _{W-SSB}	15	40	80	μs
Delay Between \overline{SS} Wake-Up (\overline{SS} LOW to HIGH) and First Accepted SPI Command	t _{W-SPI}	90	_	N/A	μs
Delay Between Interrupt Pulse and First SPI Command Accepted	t _{S-1STSPI}	30	—	N/A	μs
Minimum Time Between Two Rising Edges on \overline{SS}	t _{2SSB}	15	—	—	μs

Notes

26. This parameter is guaranteed by process monitoring but is not production tested.

27. Delay between turn-on or turn-off command and high-side on or high-side off, excluding rise or fall time due to external load.

28. Delay between the end of the SPI command (rising edge of the SS) and start of device activation/deactivation.

29. This parameter is guaranteed by process monitoring but it is not production tested.

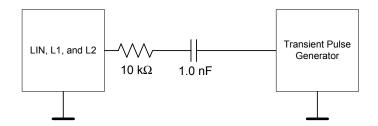

MICROCONTROLLER PARAMETRICS

Table 5. Microcontroller

For a detailed microcontroller description, refer to the MC68HC908EY16 datasheet.

Module	Description
Core	High-Performance HC08 Core with a Maximum Internal Bus Frequency of 8.0 MHz
Timer	Two 16-Bit Timers with 2 Channels (TIM A and TIM B)
Flash	16 K Bytes
RAM	512 Bytes
ADC	10-Bit Analog-to-Digital Converter
SPI	SPI Module
ESCI	Standard Serial Communication Interface (SCI) Module Bit-Time Measurement Arbitration Prescaler with Fine Baud-Rate Adjustment
ICG	Internal Clock Generation Module

TIMING DIAGRAMS

Note Waveform in accordance with ISO7637 Part 1, Test Pulses 1, 2, 3a, and 3b.

Figure 4. Test Circuit for Transient Test Pulses

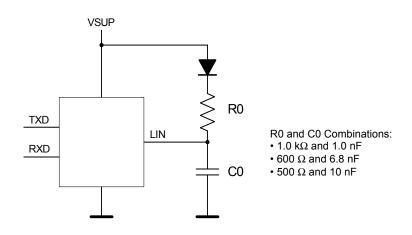


Figure 5. Test Circuit for LIN Timing Measurements

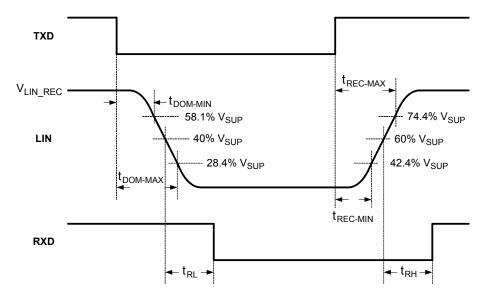


Figure 6. LIN Timing Measurements for Normal Slew Rate

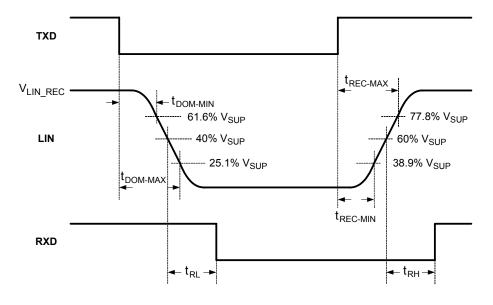


Figure 7. LIN Timing Measurements for Slow Slew Rate

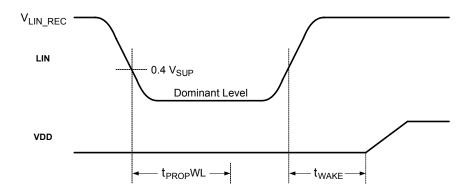


Figure 8. Wake-Up Sleep Mode Timing

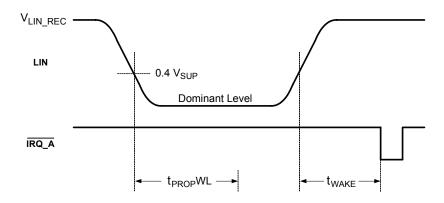


Figure 9. Wake-Up Stop Mode Timing

FUNCTIONAL DESCRIPTION

INTRODUCTION

The 908E624 was designed and developed as a highly integrated and cost-effective solution for automotive and industrial applications. For automotive body electronics, the 908E624 is well suited to perform relay control in applications like window lift, sunroof, etc., via a three-wire LIN bus.

The device combines an HC908EY16 MCU core with flash memory together with a SmartMOS IC chip. The SmartMOS IC chip combines power and control in one chip. Power switches are provided on the SmartMOS IC configured as

FUNCTIONAL TERMINAL DESCRIPTION

See Figure 1, 908E624 Simplified Application Diagram,

page 1, for a graphic representation of the various terminals referred to in the following paragraphs. Also, see the terminal diagram on page 3 for a depiction of the terminal locations on the package.

PORT A I/O TERMINALS

These terminals are special-function, bidirectional I/O port terminals that are shared with other functional modules in the MCU. PTA0: PTA4 are shared with the keyboard interrupt terminals KBD0: KBD4.

The PTA5/SPSCK terminal is not accessible in this device and is internally connected to the SPI clock terminal of the analog die. The PTA6/SS terminal is likewise not accessible.

For details refer to the 68HC908EY16 datasheet.

PORT B I/O TERMINALS

These terminals are special-function, bidirectional I/O port terminals that are shared with other functional modules in the MCU. All terminals are shared with the ADC module. The PTB6:PTB7 terminals are also shared with the Timer B module.

The PTB0/AD0 and PTB2/AD2 terminals are not accessible in this device.

For details refer to the 68HC908EY16 datasheet.

PORT C I/O TERMINALS

These terminals are special-function, bidirectional I/O port terminals that are shared with other functional modules in the MCU. For example, PTC2:PTC4 are shared with the ICG module.

PTC0/MISO and PTC1/MOSI are not accessible in this device and are internally connected to the MISO and MOSI SPI terminals of the analog die.

For details refer to the 68HC908EY16 datasheet.

high-side outputs. Other ports are also provided, which include an operational amplifier port and two wake-up terminals. An internal voltage regulator provides power to the MCU chip.

Also included in this device is a LIN physical layer, which communicates using a single wire. This enables this device to be compatible with three-wire bus systems, where one wire is used for communication, one for battery, and one for ground.

PORT D I/O TERMINALS

PTD1/TACH1 and PTD0/TACH0/BEMF are specialfunction, bidirectional I/O port terminals that can also be programmed to be timer terminals.

For details refer to the 68HC908EY16 datasheet.

PORT E I/O TERMINAL

PTE1/RXD and PTE0/TXD are special-function, bidirectional I/O port terminals that can also be programmed to be enhanced serial communication.

PTE0/TXD is internally connected to the TXD terminal of the analog die. The connection for the receiver must be done externally.

For details refer to the 68HC908EY16 datasheet.

EXTERNAL INTERRUPT TERMINAL (IRQ)

The IRQ terminal is an asynchronous external interrupt terminal. This terminal contains an internal pullup resistor that is always activated, even when the IRQ terminal is pulled LOW.

For details refer to the 68HC908EY16 datasheet.

EXTERNAL RESET TERMINAL (RST)

A logic [0] on the RST terminal forces the MCU to a known startup state. It is driven LOW when any internal reset source is asserted.

This terminal contains an internal pullup resistor that is always activated, even when the reset terminal is pulled LOW.

Important To ensure proper operation, do not add any external pullup resistor.

For details refer to the 68HC908EY16 datasheet.

MCU POWER SUPPLY TERMINALS (EVDD AND EVSS)

EVDD and EVSS are the power supply and ground terminals, respectively. The MCU operates from a singlepower supply.

Fast signal transitions on MCU terminals place high, shortduration current demands on the power supply. To prevent noise problems, take special care to provide power supply bypassing at the MCU.

For details refer to the 68HC908EY16 datasheet.

ADC SUPPLY TERMINALS (VDDA AND VSSA)

VDDA and VSSA are the power supply terminals for the analog-to-digital converter (ADC). It is recommended that a high-quality ceramic decoupling capacitor be placed between these terminals.

Important VDDA is the supply for the ADC and should be tied to the same potential as EVDD via separate traces. VSSA is the ground terminal for the ADC and should be tied to the same potential as EVSS via separate traces.

For details refer to the 68HC908EY16 datasheet.

ADC REFERENCE TERMINALS (VREFL AND VREFH)

VREFL and VREFH are the reference voltage terminals for the ADC. It is recommended that a high-quality ceramic decoupling capacitor be placed between these terminals.

Important VREFH is the high reference supply for the ADC and should be tied to the same potential as VDDA via separate traces. VREFL is the low reference supply for the ADC and should be tied to the same potential as VSSA via separate traces.

For details refer to the 68HC908EY16 datasheet.

TEST TERMINAL (FLSVPP)

This terminal is for test purposes only. Do not connect in the application.

PWMIN TERMINAL

This terminal is the direct PWM input for high-side outputs 1 and 2 (HS1 and HS2). If no PWM control is required, PWMIN must be connected to VDD to enable the HS1 and HS2 outputs.

LIN TRANSCEIVER OUTPUT TERMINAL (RXD)

This terminal is the output of LIN transceiver. The terminal must be connected to the microcontroller's Enhanced Serial Communications Interface (ESCI) module (RXD terminal).

RESET TERMINAL (RST_A)

RST_A is the reset output terminal of the analog die and must be connected to the RST terminal of the MCU.

Important To ensure proper operation, do not add any external pullup resistor.

INTERRUPT TERMINAL (IRQ_A)

IRQ_A is the interrupt output terminal of the analog die indicating errors or wake-up events. This terminal must be connected to the IRQ terminal of the MCU.

WINDOW WATCHDOG CONFIGURATION TERMINAL (WDCONF)

This terminal is the configuration terminal for the internal watchdog. A resistor is connected to this terminal. The resistor value defines the watchdog period. If the terminal is open, the watchdog period is fixed to its default value.

The watchdog can be disabled (e.g., for flash programming or software debugging) by connecting this terminal to GND.

POWER SUPPLY TERMINALS (VSUP1 AND VSUP2)

This VSUP1 power supply terminal supplies the voltage regulator, the internal logic, and LIN transceiver.

This VSUP2 power supply terminal is the positive supply for the high-side switches.

POWER GROUND TERMINAL (GND)

This terminal is the device ground connection.

HIGH-SIDE OUTPUT TERMINALS (HS1 AND HS2)

These terminals are high-side switch outputs to drive loads such as relays or lamps. Each switch is protected with overtemperature and current limit (overcurrent). The output has an internal clamp circuitry for inductive load. The HS1 and HS2 outputs are controlled by SPI and have a direct enabled input (PWMIN) for PWM capability.

HIGH-SIDE OUTPUT TERMINAL (HS3)

This high-side switch can be used to drive small lamps, Hall-effect sensors, or switch pullup resistors. The switch is protected with overtemperature and current limit (overcurrent). The output is controlled only by SPI.

LIN BUS TERMINAL (LIN)

The LIN terminal represents the single-wire bus transmitter and receiver. It is suited for automotive bus systems and is based on the LIN bus specification.

WAKE-UP TERMINALS (L1 AND L2)

These terminals are high-voltage capable inputs used to sense external switches and to wake up the device from Sleep or Stop mode. During Normal mode the state of these terminals can be read through SPI.

SENSE AMPLIFIER TERMINALS (E+, E-, OUT, VCC)

These are the terminals of the single-supply sense amplifier.

- The E+ and E- input terminals are the non-inverting and inverting inputs of the amplifier, respectively.
- The OUT terminal is the output terminal of the current sense amplifier.
- The VCC terminal is the +5.0 V single-supply connection.

+5.0 V VOLTAGE REGULATOR OUTPUT TERMINAL (VDD)

The VDD terminal is needed to place an external capacitor to stabilize the regulated output voltage. The VDD terminal is

intended to supply the embedded microcontroller. The terminal is protected against shorts to GND with an integrated current limit (temperature shutdown could occur).

Important The VDD, EVDD, VDDA, and VREFH terminals must be connected together.

VOLTAGE REGULATOR AND SENSE AMPLIFIER GROUND TERMINAL (AGND)

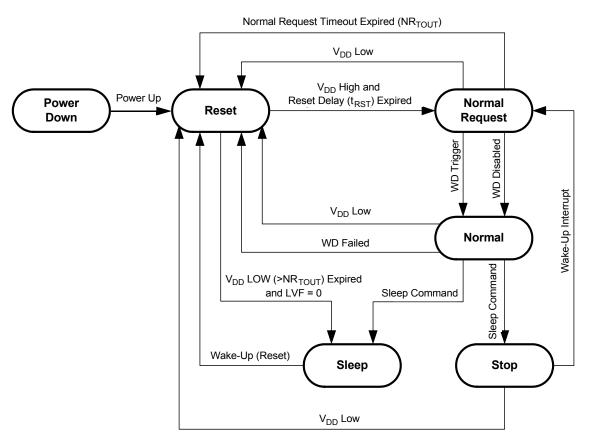
The AGND terminal is the ground terminal of the voltage regulator and the Sense Amplifier.

Important GND, AGND, VSS, EVSS, VSSA, and VREFL terminals must be connected together.

FUNCTIONAL DEVICE OPERATION

OPERATIONAL MODES

908E624 ANALOG DIE MODES OF OPERATION


The 908E624 offers three operating modes: Normal (Run), Stop, and Sleep. In Normal mode the device is active and is operating under normal application conditions. The Stop and Sleep modes are low-power modes with wake-up capabilities.

In Stop mode the voltage regulator still supplies the MCU with V_{DD} (limited current capability) and in Sleep mode the voltage regulator is turned off ($V_{DD} = 0$ V).

Wake-up from Stop mode is initiated by a wake-up interrupt. Wakeup from Sleep mode is done by a reset and the voltage regulator is turned back on.

The selection of the different modes is controlled by the MODE1:2 bits in the SPI Control register.

Figure 10 describes how transitions are done between the different operating modes and <u>Table 6</u>, page 21, gives an overview of the operating mode.

Legend

WD: Watchdog

WD Disabled: Watchdog disabled (WDCONF terminal connected to GND)

WD Trigger: Watchdog is triggered by SPI command

WD Failed: No watchdog trigger or trigger occurs in closed window

Stop Command: Stop command sent via SPI

Sleep Command: Sleep command sent via SPI

Wake-Up: L1 or L2 state change or LIN bus wake-up or SS rising edge

Figure 10. Operating Modes and Transitions

Device Mode	Voltage Regulator	Wake-Up Capabilities	RST_A Output	Watchdog Function	HS1, HS2, and HS3	LIN Interface	Sense Amplifier
Reset	V _{DD} ON	N/A	LOW	Disabled	Disabled	Recessive only	Not active
Normal Request	V _{DD} ON	N/A	HIGH	150 ms time out if WD enabled	Enabled	Transmit and receive	Not active
Normal (Run)	V _{DD} ON	N/A	HIGH	Window WD if enabled	Enabled	Transmit and receive	Active
Stop	V _{DD} ON with limited current capability	LIN wake-up, L1, L2 state change, SS rising edge	HIGH	Disabled	Disabled	Recessive state with wake-up capability	Not active
Sleep	V _{DD} OFF	LIN wake-up L1, L2 state change	LOW	Disabled	Disabled	Recessive state with wake-up capability	Not active

Table 6. Operating Modes Overview

INTERRUPTS

In Normal (Run) mode the 908E624 has four different interrupt sources. An interrupt pulse on the IRQ_A terminal is generated to report a fault to the MCU. All interrupts are not maskable and cannot be disabled.

After an Interrupt the INTSRC bit in the SPI Status register is set, indicating the source of the event. This interrupt source information is only transferred once, and the INTSRC bit is cleared automatically.

Low-Voltage Interrupt

Low-voltage interrupt (LVI) is related to external supply voltage VSUP1. If this voltage falls below the LVI threshold, it will set the LVF bit in the SPI Status register and an interrupt will be initiated. The LVF bit remains set as long as the Lowvoltage condition is present.

During Sleep and Stop mode the low-voltage interrupt circuitry is disabled.

High-Voltage Interrupt

High-voltage interrupt (HVI) is related to external supply voltage VSUP1. If this voltage rises above the HVI threshold, it will set the HVF bit in the SPI Status register and an interrupt will be initiated. The HVF bit remains set as long as the high-voltage condition is present.

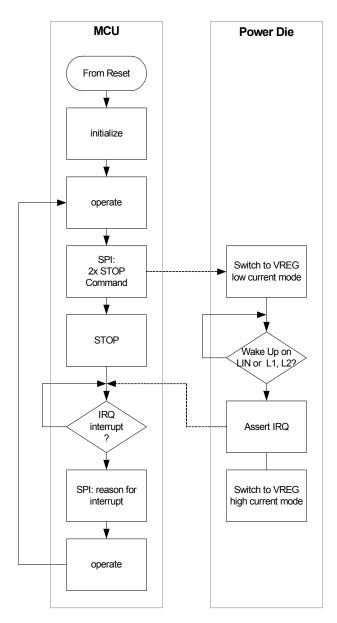
During Sleep and Stop mode the low-voltage interrupt circuitry is disabled.

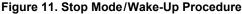
Wake-Up Interrupts

In Stop mode the IRQ_A terminal reports wake-up events on the L1, L2, or the LIN bus to the MCU. All wake-up interrupts are not maskable and cannot be disabled. After a wake-up interrupt, the INTSRC bit in the Serial Peripheral Interface (SPI) Status register is set, indicating the source of the event. This wake-up source information is only transferred once, and the INTSRC bit is cleared automatically.

Figure 11, page 22, describes the Stop/Wake-Up procedure.

VOLTAGE REGULATOR TEMPERATURE PREWARNING (VDDT)


Voltage regulator temperature prewarning (VDDT) is generated if the voltage regulator temperature is above the T_{PRE} threshold, it will set the VDDT bit in the SPI Status register and an interrupt will be initiated. The VDDT bit remains set as long as the error condition is present.


During Sleep and Stop mode the voltage regulator temperature prewarning circuitry is disabled.

HIGH-SIDE SWITCH THERMAL SHUTDOWN (HSST)

The high-side switch thermal shutdown HSST is generated if one of the high-side switches HS1: HS3 is above the HSST threshold, it will shutdown the corresponding Highside switch, set the HSST flag in the SPI Status register and an interrupt will be initiated. The HSST bit remains set as long as the error condition is present.

During Sleep and Stop mode the high-side switch thermal shutdown circuitry is disabled.

ANALOG DIE INPUTS/OUTPUTS

High-Side Output Terminals HS1 and HS2

These are two high-side switches used to drive loads such as relays or lamps. They are protected with overtemperature and current limit (overcurrent) and include an active internal clamp circuitry for inductive load drive. Control is done using the SPI Control register. PWM capability is offered through the PWMIN input terminal.

The high-side switch is turned on if both the HSxON bit in the SPI Control register is set and the PWMIN input is HIGH (refer to Figure 12, page 23). In order to have HS1 on, the PWMIN must be HIGH and bit HS1ON must be set. The same applies to the HS2 output.

If no PWM control is required, PWMIN must be connected to the VDD terminal.

Current Limit (Overcurrent) Protection

These high-side switches feature current limit to protect them against overcurrent and short circuit conditions.

Overtemperature Protection

If an overtemperature condition occurs on any of the three high-side switches, the faulty switch is turned off and latched off until the HS1 (or HS2 or HS3) bit is set to "1" in the SPI Control register. The failure is reported by the HSST bit in the SPI Control register.

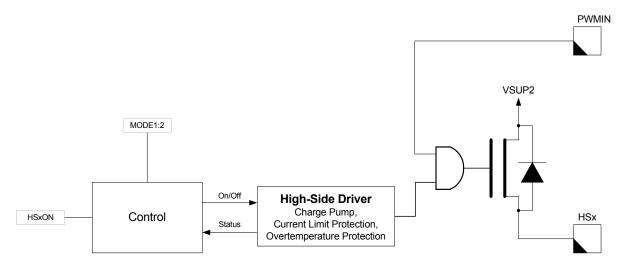
Sleep and Stop Mode

In Sleep and Stop modes the high-sides are disabled.

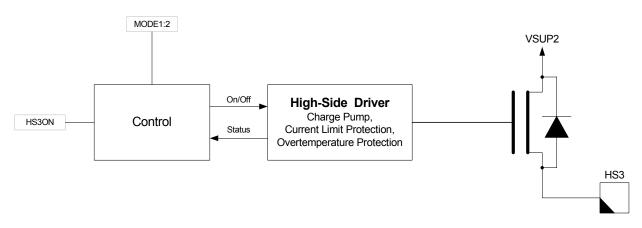
High-Side Output HS3

This high-side switch can be used to drive small lamps, Hall-effect sensors, or switch pullup resistors. Control is done using the SPI Control register. No direct PWM control is possible on this terminal (refer to <u>Figure 13</u>, page 23).

Current Limit (Overcurrent) Protection

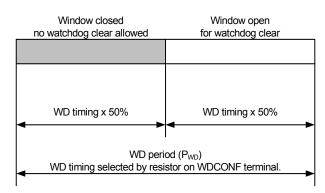

This high-side feature switch feature current limit to protect it against overcurrent and short circuit conditions.

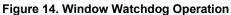
Overtemperature Protection


If an overtemperature condition occurs on any of the three high-side switches, the faulty switch is turned off and latched off until the HS3 (or HS1 or HS2) bit is set to "1" in the SPI Control register. The failure is reported by the HSST bit in the SPI Control register.


Sleep and Stop Mode

In Sleep and Stop mode the high-side is disabled.




WINDOW WATCHDOG

The window watchdog is configurable using an external resistor at the WDCONF terminal. The watchdog is cleared through by the MODE1:2 bits in the SPI Control register (refer to <u>Table 8</u>, page 26).

A watchdog clear is only allowed in the open window. If the watchdog is cleared in the closed window or has not been cleared at the end of the open window, the watchdog will generate a reset on the RST_A terminal and reset the whole device.

Note The watchdog clear in Normal request mode (150 ms) (first watchdog clear) has no window.

Watchdog Configuration

If the WDCONF terminal is left open, the default watchdog period is selected (typ. 150 ms). If no watchdog function is required, the WDCONF terminal must be connected to GND.

The watchdog period is calculated using the following formula:

VOLTAGE REGULATOR

The 908E624 chip contains a low-power, low dropout voltage regulator to provide internal power and external power for the MCU. The on-chip regulator consist of two elements, the main voltage regulator and the low-voltage reset circuit.

The V_{DD} regulator accepts an unregulated input supply and provides a regulated V_{DD} supply to all digital sections of the device. The output of the regulator is also connected to the VDD terminal to provide the 5.0 V to the microcontroller.

Current Limit (Overcurrent) Protection

The voltage regulator has current limit to protect the device against overcurrent and short circuit conditions.

Overtemperature Protection

The voltage regulator also features an overtemperature protection having an overtemperature warning (Interrupt - VDDT) and an overtemperature shutdown.

Stop Mode

During Stop mode the Stop mode regulator supplies a regulated output voltage. The Stop mode regulator has a limited output current capability.

Sleep Mode

In Sleep mode the voltage regulator external $\mathsf{V}_{\mathsf{D}\mathsf{D}}$ is turned off.

FACTORY TRIMMING AND CALIBRATION

To enhance the ease-of-use of the 908E624, various parameters (e.g., ICG trim value) are stored in the flash memory of the device. The following flash memory locations are reserved for this purpose and might have a value different from the "empty" (0xFF) state:

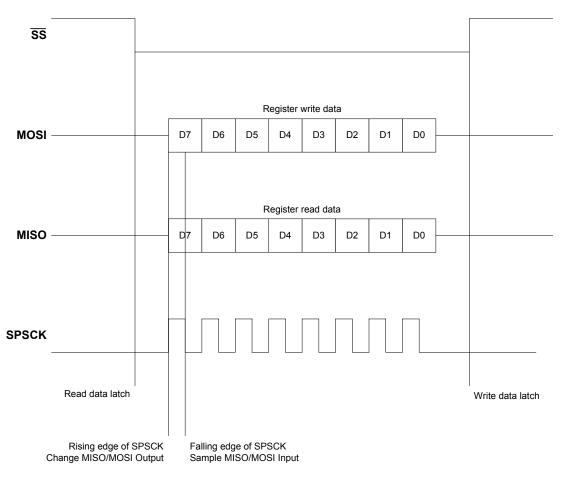
- 0xFD80:0xFDDF Trim and Calibration Values
- 0xFFFE:0xFFFF Reset Vector

In the event the application uses these parameters, one has to take care not to erase or override these values. If these parameters are not used, these flash locations can be erased and otherwise used.

OPERATING MODES OF THE MCU

For a detailed description of the operating modes of the MCU, refer to the MC68HC908EY16 datasheet.

LOGIC COMMANDS AND REGISTERS


908E624 SPI INTERFACE AND CONFIGURATION

The serial peripheral interface creates the communication link between the microcontroller and the analog die of the 908E624.

The interface consists of four terminals (see Figure 15):

- SS—Slave Select
- MOSI—Master-Out Slave-In
- MISO—Master-In Slave-Out
- SPSCK—Serial Clock

A complete data transfer via the SPI consists of 1 byte. The master sends 8 bits of control information and the slave replies with 8 bits of status data.

Figure 15. SPI Protocol

During the inactive phase of the $\overline{\text{SS}}$ (High), the new data transfer is prepared.

The falling edge of the \overline{SS} indicates the start of a new data transfer and puts the MISO in the low-impedance state and latches the analog status data (Register read data).

With the rising edge of the SPI clock, SPSCK the data is moved to MISO/MOSI terminals. With the falling edge of the SPI clock SPSCK the data is sampled by the Receiver.

The data transfer is only valid if exactly 8 sample clock edges are present in the active (low) phase of $\overline{\text{SS}}$.

The rising edge of the slave select \overline{SS} indicates the end of the transfer and latches the write data (MOSI) into the register The \overline{SS} high forces MISO to the high impedance state.

SPI REGISTER OVERVIEW

<u>Table 7</u> summarizes the SPI Register bit meaning, reset value, and bit reset condition.

Table 7. SPI Register Overview

Read/Write		Bit								
Information	D7	D6	D5	D4	D3	D2	D1	D0		
Write	LINSL2	LINSL1	LIN-PU	HS3ON	HS2ON	HS1ON	MODE2	MODE1		
Read	INTSRC ⁽³⁰⁾	LINWU or LINFAIL	HVF	LVF or BATFAIL ⁽³¹⁾	VDDT	HSST	L2	L1		
Write Reset Value	0	0	0	0	0	0	—	_		
Write Reset Condition	POR, RESET	POR, RESET	POR	POR, RESET	POR, RESET	POR, RESET	_	_		

Notes

30. D7 signals interrupts and wake-up interrupts, D6:D0 indicated the source.

31. The first SPI read after reset returns the BATFAIL flag state on bit D4.

SPI Control Register (Write)

Table 8 shows the SPI Control register bits by name.

Table 8. Control Bits Function (Write Operation)

D7	D6	D5	D4	D3	D2	D1	D0
LINSL2	LINSL1	LIN-PU	HS3ON	HS2ON	HS10N	MODE2	MODE1

LINSL2:1—LIN Baud Rate and Low-Power Mode Selection Bits

These bits select the LIN slew rate and requested lowpower mode in accordance with <u>Table 9</u>. Reset clears the LINSL2:1 bits.

Table 9. LIN Baud Rate and Low-Power Mode Selection Bits

LINSL2	LINSL1	Description
0	0	Baud Rate up to 20 kbps (normal)
0	1	Baud Rate up to 10 kbps (slow)
1	0	Fast Program Download Baud Rate up to 100 kbps
1	1	Low-Power Mode (Sleep or Stop) Request

LIN-PU—LIN Pullup Enable Bit

This bit controls the LIN pullup resistor during Sleep and Stop modes.

- 1 = Pullup disconnected in Sleep and Stop modes.
- 0 = Pullup connected in Sleep and Stop modes.

HS3ON:HS1ON—High-Side H3:HS1 Enable Bit

This bit enables the HSx. Reset clears the HSx bit.

- 1 = HSx switched on (refer to Note below).
- 0 = HSx switched off.

Note If no PWM on HS1 and HS2 is required, the PWMIN terminal must be connected to the VDD terminal.

MODE2:1—Mode Section Bits

The MODE2:1 bits control the operating modes and the watchdog in accordance with <u>Table 10</u>.

Table 10. Mode Selection Bits

MODE2	MODE1	Description
0	0	Sleep Mode ⁽³²⁾
0	1	Stop Mode ⁽³²⁾
1	0	Watchdog Clear ⁽³³⁾
1	1	Run (Normal) Mode

Notes

To enter Sleep and Stop mode, a special sequence of SPI commands is implemented.

33. The device stays in Run (Normal) mode.

To safely enter Sleep or Stop mode and to ensure that these modes are not affected by noise issue during SPI transmission, the Sleep/Stop commands require two SPI transmissions.

Sleep Mode Sequence

The Sleep command, as shown in $\underline{\text{Table 11}},$ has to be sent twice.

Table 11. Sleep Command Bits

LINSL2	LINSL1	LIN-PU	HS3ON	HS2ON	HS1ON	MODE 2	MODE 1
1	1	х	x	х	х	0	0

x = Don't care.

Stop Mode Sequence

The Stop command, as shown in <u>Table 12</u>, has to be sent twice.

Table 12. Stop Command Bits

LINSL2	LINSL1	LIN-PU	HS3O N	HS2O N	HS1O N	MODE2	MODE1
1	1	х	х	х	х	0	1

x = Don't care.

SPI Status Register (Read)

Table 13 shows the SPI Status register bits by name.

Table 13. Control Bits Function (Read Operation)

D7	D6	D5	D4	D3	D2	D1	D0
INTSRC	LINWU or LINFAIL	HVF	LVF or BATFAIL	VDDT	HSST	L2	L1

INTSCR—Register Content Flags or Interrupt Source

This bit indicates if the register contents reflect the flags or an interrupt/wake-up interrupt source.

- 1 = D6:D0 reflects the interrupt or wake-up source.
- 0 = No interrupt occurred. Other SPI bits report real time status.

LINWU/LINFAIL—LIN Status Flag Bit

This bit indicates a LIN wake-up condition.

- 1 = LIN bus wake-up occurred or LIN overcurrent/ overtemperature occurred.
- 0 = No LIN bus wake-up occurred.

HVF — High-Voltage Flag Bit

This flag is set on an overvoltage (VSUP1) condition.

- 1 = High-voltage condition has occurred.
- 0 = no High-voltage condition.

LVF/BATFAIL—Low-Voltage Flag Bit

This flag is set on an undervoltage (VSUP1) condition.

- 1 = Low-voltage condition has occurred.
- 0 = No low-voltage condition.

VDDT—Voltage Regulator Status Flag Bit

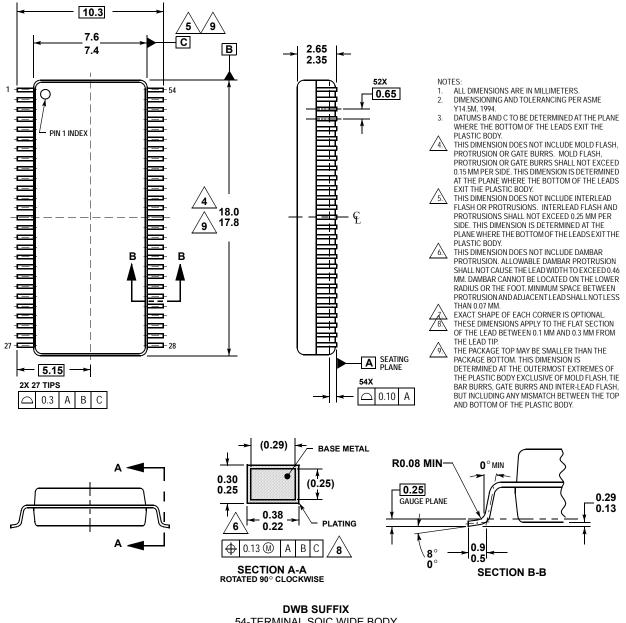
This flag is set as pre-warning in case of an overtemperature condition on the voltage regulator.

- 1 = Voltage regulator overtemperature condition, prewarning.
- 0 = No overtemperature detected.

HSST—High-Side Status Flag Bit

This flag is set on overtemperature conditions on one of the high-side outputs.

- 1 = HSx off due to overtemperature.
- 0 = No overtemperature.


L2:L1—Wake-Up Inputs L1, L2 Status Flag Bit

These flags reflect the status of the L2 and L1 input terminals and indicate the wake-up source.

- 1 = L2:L1 input high or wake-up by L2:L1 (first register read after wake-up indicated with INTSRC = 1).
- 0 = L2:L1 input low.

PACKAGE DIMENSIONS

Important For the most current revision of the package, visit www.freescale.com and do a keyword search on the 98A drawing number below.

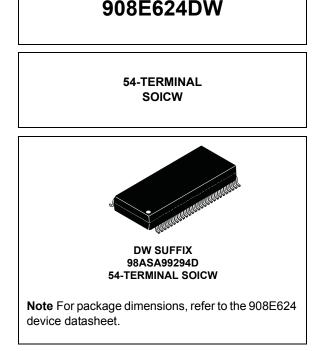
Integrated Triple High-Side Switch with Embedded MCU and LIN Serial Communication for Relay Drivers

Introduction

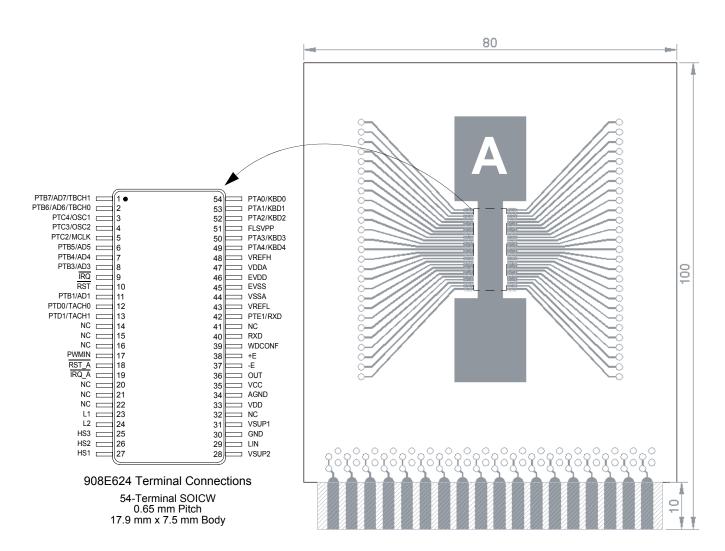
This package is a dual die package. There are two heat sources in the package independently heating with P₁ and P₂. This results in two junction temperatures, T_{J1} and T_{J2}, and a thermal resistance matrix with R_{0JAmn}.

For m, n = 1, $R_{\theta JA11}$ is the thermal resistance from Junction 1 to the reference temperature while only heat source 1 is heating with P_1 .

For m = 1, n = 2, $R_{\theta JA12}$ is the thermal resistance from Junction 1 to the reference temperature while heat source 2 is heating with P₂. This applies to $R_{\theta J21}$ and $R_{\theta J22}$, respectively.


$\left[T_{J1} \right]$		$R_{ extsf{ heta}JA11}$	$R_{\theta JA12}$		$\left(P_{1}\right)$	I
T_{J2}	> =	$R_{\theta JA21}$	$R_{\theta JA22}$	• <	P ₂	>

The stated values are solely for a thermal performance comparison of one package to another in a standardized environment. This methodology is not meant to and will not predict the performance of a package in an application-specific environment. Stated values were obtained by measurement and simulation according to the standards listed below.


Standards

Thermal	1 = Power Chip, 2 = Logic Chip (°C/W)						
Resistance	m = 1, n = 1	m = 1, n = 2 m = 2, n = 1	m = 2, n = 2				
R _{θJAmn}	40	31	36				
R _{θJBmn}	25	16	21				
R _{θJAmn}	57	47	52				
R _{θJCmn}	21	12	16				

Table 1. Thermal Performance Comparison

Device on Thermal Test Board

Material:	Single layer printed circuit board FR4, 1.6 mm thickness Cu traces, 0.07 mm thickness
Outline:	80 mm x 100 mm board area, including edge connector for thermal testing
Area A :	Cu heat-spreading areas on board surface
Ambient Conditions:	Natural convection, still air

Table 2. Th	nermal Resistance	Performance
-------------	-------------------	-------------

Terminal Resistance	Area A (mm ²)	1 = Power Chip, 2 = Logic Chip ($^{\circ}$ C/W)		
		m = 1, n = 1	<i>m</i> = 1, n = 2 <i>m</i> = 2, n = 1	m = 2, n = 2
R _{θJAmn}	0	58	48	53
	300	56	46	51
	600	54	45	50

 $\mathsf{R}_{\theta JA\textit{mn}}$ is the thermal resistance between die junction and ambient air.

This device is a dual die package. Index *m* indicates the die that is heated. Index *n* refers to the number of the die where the junction temperature is sensed.

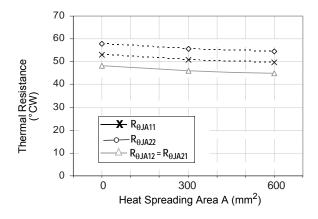


Figure 2. Device on Thermal Test Board $R_{\theta JA}$

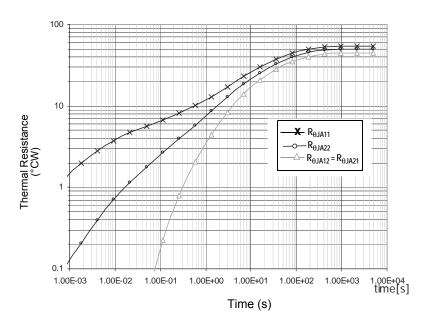


Figure 3. Transient Thermal Resistance (1.0 W Step Response) Device on Thermal Test Board Area A = 600 (mm²)

How to Reach Us:

Home Page: www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH

Freescale Halbleiter Deutschland C Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2004. All rights reserved.

MM908E624 Rev. 4.0 12/2004