INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT643 Octal bus transceiver; 3-state; true/inverting

Product specification
File under Integrated Circuits, IC06

December 1990

Octal bus transceiver; 3-state; true/inverting

74HC/HCT643

FEATURES

- · Octal bidirectional bus interface
- True and inverting 3-state outputs
- · Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT643 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT643 are octal transceivers featuring true and inverting 3-state bus compatible outputs in both send and receive directions.

The "643" features an output enable (\overline{OE}) input for easy cascading and a send/receive (DIR) for direction control. \overline{OE} controls the outputs so that the buses are effectively isolated.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

CVMDOL	DADAMETED	CONDITIONS	TYI	LINIT		
SYMBOL	PARAMETER	CONDITIONS	НС	нст	UNIT	
t _{PHL} /t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$				
	A _n to B _n ; inverting		7	8	ns	
	B _n to A _n ; true		8	11	ns	
C _I	input capacitance		3.5	3.5	pF	
C _{I/O}	input/output capacitance		10	10	pF	
C _{PD}	power dissipation capacitance per transceiver	notes 1 and 2	42	44	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz

 f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

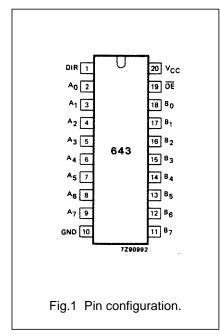
C_L = output load capacitance in pF

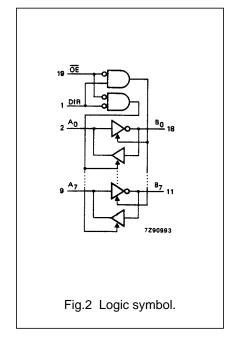
V_{CC} = supply voltage in V

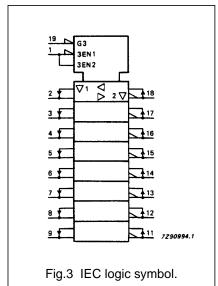
2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".


Octal bus transceiver; 3-state; true/inverting


74HC/HCT643

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	DIR	direction control
2, 3, 4, 5, 6, 7, 8, 9	A ₀ to A ₇	data inputs/outputs
10	GND	ground (0 V)
18, 17, 16, 15, 14, 13, 12, 11	B ₀ to B ₇	data inputs/outputs
19	ŌĒ	output enable input (active LOW)
20	V _{CC}	positive supply voltage

FUNCTION TABLE

INP	UTS	INPUTS/OUTPUTS					
ŌĒ	DIR	A _n	B _n				
L	L	A = B	inputs				
L	Н	inputs	$B = \overline{A}$				
Н	Х	Z	Z				

Notes

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

Z = high impedance OFF-state

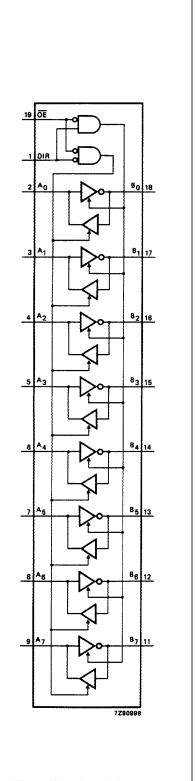


Fig.4 Functional diagram.

Philips Semiconductors Product specification

Octal bus transceiver; 3-state; true/inverting

74HC/HCT643

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)							LINUT	TEST CONDITIONS	
SYMBOL		74HC									
STWIBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{PHL} / t _{PLH}	$\begin{array}{c} \text{propagation delay} \\ A_n \text{ to } B_n; \\ \text{inverting} \end{array}$		25 9 7	90 18 15		115 23 20		135 27 23	ns	2.0 4.5 6.0	Fig.5
t _{PHL} / t _{PLH}	propagation delay B _n to A _n ; non-inverting (true)		28 10 8	90 18 15		115 23 20		135 27 23	ns	2.0 4.5 6.0	Fig.6
t _{PZH} / t _{PZL}			39 14 11	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7
t _{PHZ} / t _{PLZ}			44 16 13	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.5 and Fig.6

Philips Semiconductors Product specification

Octal bus transceiver; 3-state; true/inverting

74HC/HCT643

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

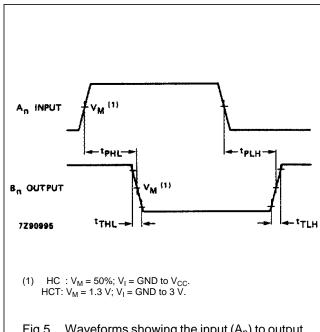
I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
A _n	1.50
B _n	0.40
ŌE	1.50
DIR	0.90

AC CHARACTERISTICS FOR 74HCT


 $GND = 0 \text{ V; } t_r = t_f = 6 \text{ ns; } C_L = 50 \text{ pF}$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS		
SYMBOL		74HCT										
		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS		
		min.	typ.	max.	min.	max.	min.	max.		(1)		
t _{PHL} / t _{PLH}	$\begin{array}{c} \text{propagation delay} \\ \text{A}_{\text{n}} \text{ to B}_{\text{n}}; \\ \text{inverting} \end{array}$		10	20		25		30	ns	4.5	Fig.5	
t _{PHL} / t _{PLH}	propagation delay B _n to A _n ; non-inverting (true)		13	23		29		35	ns	4.5	Fig.6	
t _{PZH} / t _{PZL}			16	30		38		45	ns	4.5	Fig.7	
t _{PHZ} / t _{PLZ}			17	30		38		45	ns	4.5	Fig.7	
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.5 and Fig.6	

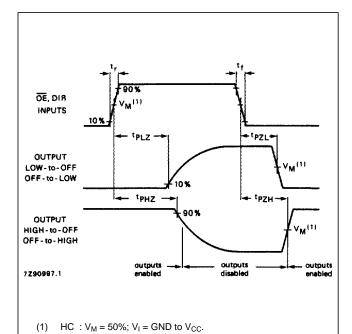
Octal bus transceiver; 3-state; true/inverting

74HC/HCT643

AC WAVEFORMS

B_n INPUT

V_M


(1)

HC: V_M = 50%; V_I = GND to V_{CC}.

HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.6 Waveforms showing the input (B_n) to output (A_n) propagation delays and the output transition times.

Fig.5 Waveforms showing the input (A_n) to output (B_n) propagation delays and the output transition times.

HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.7 Waveforms showing the 3-state enable and disable times for OE and DIR inputs.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".