DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4016 Quad bilateral switches

File under Integrated Circuits, IC06

FEATURES

- Low "ON" resistance:
160Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
120Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$
80Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$
- Individual switch controls
- Typical "break before make" built in
- Output capability: non-standard
- ICC category: SSI

GENERAL DESCRIPTION

The 74HC/HCT4016 are high-speed Si-gate CMOS devices and are pin compatible with the " 4016 " of the
"4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4016 have four independent analog switches (transmission gates).
Each switch has two input/output terminals $\left(Y_{n}, Z_{n}\right)$ and an active HIGH enable input $\left(E_{n}\right)$. When E_{n} is connected to $V_{C C}$, a low bidirectional path between Y_{n} and Z_{n} is established (ON condition). When E_{n} is connected to ground (GND), the switch is disabled and a high impedance between Y_{n} and Z_{n} is established (OFF condition).

Current through a switch will not cause additional V_{CC} current provided the voltage at the terminals of the switch is maintained within the supply voltage range; $V_{C C} \gg\left(V_{Y}, V_{Z}\right) \gg$ GND. Inputs Y_{n} and Z_{n} are electrically equivalent terminals.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn "ON" time E_{n} to $\mathrm{V}_{\text {OS }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	16	17	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time E_{n} to $\mathrm{V}_{\text {OS }}$		14	20	ns
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per switch	notes 1 and 2	12	12	pF
$\mathrm{C}_{\text {S }}$	max. switch capacitance		5	5	pF

Notes

1. $C_{P D}$ is used to determine the dynamic power dissipation $\left(P_{D}\right.$ in $\left.\mu W\right)$:

$$
P_{D}=C_{P D} \times V_{C C}^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}^{2} \times f_{o}\right\} \text { where: }
$$

$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}=$ sum of outputs
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF
$\mathrm{C}_{\mathrm{S}}=$ max. switch capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
$1,4,8,11$	Y_{0} to Y_{3}	independent inputs/outputs
7	GND	ground (0 V)
$2,3,9,10$	Z_{0} to Z_{3}	independent inputs/outputs
$13,5,6,12$	E_{0} to E_{3}	enable inputs (active HIGH)
14	$\mathrm{~V}_{\mathrm{CC}}$	positive supply voltage

Fig. 4 Functional diagram.

APPLICATIONS

- Signal gating
- Modulation
- Demodulation
- Chopper

FUNCTION TABLE

INPUT $\mathbf{E}_{\mathbf{n}}$	CHANNEL IMPEDANCE
L	high
H	low

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level

L = LOW voltage level

Fig. 5 Schematic diagram (one switch).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages are referenced to GND (ground = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V_{CC}	DC supply voltage	-0.5	+11.0	V	
$\pm{ }_{\text {IK }}$	DC digital input diode current		20	mA	for $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{l}_{\text {SK }}$	DC switch diode current		20	mA	for $\mathrm{V}_{\mathrm{S}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{S}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{l}_{\text {S }}$	DC switch current		25	mA	for $-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{I}_{\mathrm{CC}} ; \pm_{\mathrm{GND}}$	DC V ${ }_{\text {CC }}$ or GND current		50	mA	
$\mathrm{T}_{\text {stg }}$	storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$	
$\mathrm{P}_{\text {tot }}$	power dissipation per package plastic DIL		750	mW	for temperature range: -40 to $+125^{\circ} \mathrm{C}$ 74HC/HCT above $+70^{\circ} \mathrm{C}$: derate linearly with $12 \mathrm{~mW} / \mathrm{K}$
	plastic mini-pack (SO)		500	mW	above $+70^{\circ} \mathrm{C}$: derate linearly with $8 \mathrm{~mW} / \mathrm{K}$
$\mathrm{P}_{\text {S }}$	power dissipation per switch		100	mW	

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74HC			74HCT			UNIT	CONDITIONS
		min.	typ.	max.	min.	typ.	max.		
$\mathrm{V}_{\text {CC }}$	DC supply voltage	2.0	5.0	10.0	4.5	5.0	5.5	V	
V_{1}	DC input voltage range	GND		$\mathrm{V}_{\text {CC }}$	GND		$\mathrm{V}_{C C}$	V	
$\mathrm{V}_{\text {S }}$	DC switch voltage range	GND		$\mathrm{V}_{C C}$	GND		$\mathrm{V}_{C C}$	V	
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-40		+85	-40		+85	${ }^{\circ} \mathrm{C}$	see DC and AC
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-40		+125	-40		+125	${ }^{\circ} \mathrm{C}$	CHARACTERISTICS
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times		6.0	$\begin{aligned} & \hline 1000 \\ & 500 \\ & 400 \\ & 250 \\ & \hline \end{aligned}$		6.0	500	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V} \end{aligned}$

DC CHARACTERISTICS FOR 74HC/HCT

For 74HC: $\quad \mathrm{V}_{\mathrm{CC}}=2.0,4.5,6.0$ and 9.0 V
For 74HCT: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

SYMBOL	PARAMETER	Tamb ${ }^{\circ}{ }^{\circ} \mathrm{C}$)							UNIT	TEST CONDITIONS			
		74HC/HCT								V_{Cc} (V)	$\begin{gathered} \mathbf{I}_{\mathbf{S}} \\ (\mu \mathbf{A}) \end{gathered}$	$\mathrm{V}_{\text {is }}$	V_{1}
		+25			-40 to +85		-40 to +125						
		min.	typ.	max.	min.	max.	min.	max.					
R_{ON}	ON resistance (peak)		$\begin{aligned} & - \\ & 160 \\ & 120 \\ & 85 \end{aligned}$	$\begin{aligned} & - \\ & 320 \\ & 240 \\ & 170 \end{aligned}$		$\begin{aligned} & - \\ & 400 \\ & 300 \\ & 213 \end{aligned}$		$\begin{aligned} & 480 \\ & 360 \\ & 255 \end{aligned}$	$\begin{aligned} & \hline \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ 1000 \\ 1000 \\ 1000 \end{array}$	V_{CC} to GND	V_{IH} or V_{IL}
R_{ON}	ON resistance (rail)		$\begin{array}{\|l\|} \hline 160 \\ 80 \\ 70 \\ 60 \end{array}$	$\begin{array}{\|l} - \\ 160 \\ 140 \\ 120 \end{array}$		$\begin{aligned} & - \\ & 200 \\ & 175 \\ & 150 \end{aligned}$		$\begin{array}{\|l} - \\ 240 \\ 210 \\ 180 \end{array}$	$\begin{aligned} & \hline \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \end{array}$	$\begin{aligned} & \hline 100 \\ & 1000 \\ & 1000 \\ & 1000 \end{aligned}$	GND	V_{IH} or $\mathrm{V}_{\text {IL }}$
$\mathrm{R}_{\text {ON }}$	ON resistance (rail)		$\begin{array}{\|l\|} \hline 170 \\ 90 \\ 80 \\ 65 \end{array}$	$\begin{array}{\|l} - \\ 180 \\ 160 \\ 135 \end{array}$		$\begin{aligned} & - \\ & 225 \\ & 200 \\ & 170 \end{aligned}$		$\begin{aligned} & - \\ & 270 \\ & 240 \\ & 205 \end{aligned}$	$\begin{aligned} & \hline \Omega \\ & \Omega \\ & \Omega \\ & \Omega \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ 1000 \\ 1000 \\ 1000 \end{array}$	V_{CC}	V_{IH} or $V_{\text {IL }}$
$\Delta \mathrm{R}_{\mathrm{ON}}$	maximum $\triangle \mathrm{ON}$ resistance between any two channels		$\begin{aligned} & - \\ & 16 \\ & 12 \\ & 9 \end{aligned}$						Ω Ω Ω Ω	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \end{array}$		$V_{C C}$ to GND	V_{IH} or V_{IL}

Notes to the DC Characteristics

1. At supply voltages approaching 2.0 V the analog switch ON -resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
2. For test circuit measuring R_{ON} see Fig.6.

Fig. 8 Test circuit for measuring ON-state current.

Fig. 9 Typical R_{ON} as a function of input voltage $\mathrm{V}_{\text {is }}$ for $\mathrm{V}_{\text {is }}=0$ to V_{CC}.

Quad bilateral switches

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right.$)							UNIT	TEST CONDITIONS		
		74HC								$\begin{array}{\|l} \left\lvert\, \begin{array}{l} \mathrm{v}_{\mathrm{cc}} \\ (\mathrm{~V}) \end{array}\right. \end{array}$	V_{1}	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
V_{IH}	HIGH level input voltage	$\begin{array}{\|l\|} \hline 1.5 \\ 3.15 \\ 4.2 \\ 6.3 \end{array}$	$\begin{aligned} & \hline 1.2 \\ & 2.4 \\ & 3.2 \\ & 4.3 \end{aligned}$		$\begin{array}{\|l\|} \hline 1.5 \\ 3.15 \\ 4.2 \\ 6.3 \end{array}$		$\begin{aligned} & \hline 1.5 \\ & 3.15 \\ & 4.2 \\ & 6.3 \end{aligned}$		V	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 9.0 \end{aligned}$		
VIL	LOW level input voltage		$\begin{aligned} & \hline 0.8 \\ & 2.1 \\ & 2.8 \\ & 4.3 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.50 \\ 1.35 \\ 1.80 \\ 2.70 \end{array}$		$\begin{aligned} & \hline 0.50 \\ & 1.35 \\ & 1.80 \\ & 2.70 \end{aligned}$		$\begin{array}{\|l\|} \hline 0.50 \\ 1.35 \\ 1.80 \\ 2.70 \end{array}$	V	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 9.0 \end{aligned}$		
± 1	input leakage current			$\begin{aligned} & \hline 0.1 \\ & 0.2 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & \hline 1.0 \\ & 2.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{array}{l\|} \hline 6.0 \\ 10.0 \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \text { or } \\ & \text { GND } \end{aligned}$	
$\pm{ }^{\text {s }}$	analog switch OFF-state current per channel			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \text { or } \\ & \mathrm{V}_{\mathrm{IL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \left\|\mathrm{V}_{\mathrm{S}}\right\|= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \\ & \text { (see Fig.7) } \\ & \hline \end{aligned}$
$\pm{ }^{\text {s }}$	analog switch ON-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IH}} \\ & \text { or } \\ & \mathrm{V}_{\mathrm{IL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \left\|\mathrm{V}_{\mathrm{S}}\right\|= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \\ & \text { (see Fig.8) } \\ & \hline \end{aligned}$
Icc	quiescent supply current			$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 20.0 \\ & 40.0 \end{aligned}$		$\begin{array}{\|l\|} \hline 40.0 \\ 80.0 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \hline 6.0 \\ & 10.0 \end{aligned}$	$V_{C C}$ or GND	$\mathrm{V}_{\text {is }}=\mathrm{GND} \text { or }$ $\mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\text {os }}=$ V_{CC} or GND

AC CHARACTERISTICS FOR 74HC

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	Tamb $\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HC								$V_{c c}$ (V)	OTHER
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $V_{\text {is }}$ to $V_{\text {os }}$		$\begin{aligned} & \hline 17 \\ & 6 \\ & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 12 \\ & 10 \\ & 8 \end{aligned}$		$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \\ & 10 \end{aligned}$		$\begin{aligned} & 90 \\ & 18 \\ & 15 \\ & 12 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 9.0 \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=\infty ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Fig.16)
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn "ON" time E_{n} to V_{os}		$\begin{aligned} & \hline 52 \\ & 19 \\ & 15 \\ & 11 \end{aligned}$	$\begin{array}{\|l\|} \hline 190 \\ 38 \\ 32 \\ 28 \end{array}$		$\begin{array}{\|l\|} \hline 240 \\ 48 \\ 41 \\ 35 \end{array}$		$\begin{array}{\|l\|} \hline 235 \\ 57 \\ 48 \\ 42 \end{array}$	ns	$\begin{array}{\|l} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \end{array}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Figs 17 and 18)
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time E_{n} to $\mathrm{V}_{\text {os }}$		47 17 14 13	$\begin{array}{\|l\|} \hline 145 \\ 29 \\ 25 \\ 22 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 180 \\ 36 \\ 31 \\ 28 \end{array}$		$\begin{array}{\|l\|} \hline 220 \\ 44 \\ 38 \\ 33 \end{array}$	ns	$\begin{array}{\|l} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \end{array}$	$R_{L}=1 \mathrm{k} \Omega ; C_{L}=50 \mathrm{pF}$ (see Figs 17 and 18)

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground = 0 V)

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS		
		74HCT								$V_{C c}$ (V)	V_{1}	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
V_{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	$\begin{array}{\|l\|} \hline 4.5 \\ \text { to } \\ 5.5 \\ \hline \end{array}$		
V_{IL}	LOW level input voltage		1.2	0.8		0.8		0.8	V	$\begin{array}{\|l} \hline 4.5 \\ \text { to } \\ 5.5 \\ \hline \end{array}$		
± 1	input leakage current			0.1		1.0		1.0	$\mu \mathrm{A}$	5.5	V_{CC} or GND	
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-state current per channel			0.1		1.0		1.0	$\mu \mathrm{A}$	5.5	V_{IH} or V_{IL}	$\begin{array}{\|l} \left\|\mathrm{V}_{\mathrm{S}}\right\|= \\ \mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \\ \text { (see Fig.7) } \end{array}$
$\pm \mathrm{l}_{\text {S }}$	analog switch ON-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	5.5	V_{IH} or V_{IL}	$\begin{aligned} & \left\|\mathrm{V}_{\mathrm{S}}\right\|= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \\ & \text { (see Fig.8) } \end{aligned}$
ICC	quiescent supply current			2.0		20.0		40.0	$\mu \mathrm{A}$	$\begin{aligned} & \hline 4.5 \\ & \text { to } \\ & 5.5 \end{aligned}$	V_{CC} or GND	$\begin{aligned} & \mathrm{V}_{\text {is }}=\text { GND or } \\ & \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{os}}= \\ & \mathrm{V}_{\mathrm{CC}} \text { or } G N D \end{aligned}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	$\mu \mathrm{A}$	$\begin{array}{\|l\|} \hline 4.5 \\ \text { to } \\ 5.5 \end{array}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & -2.1 \mathrm{~V} \end{aligned}$	other inputs at V_{CC} or GND

Note

1. The value of additional quiescent supply current ($\Delta \mathrm{I}_{\mathrm{CC}}$) for a unit load of 1 is given here.

To determine $\Delta \mathrm{I}_{\mathrm{CC}}$ per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
E_{N}	1.00

AC CHARACTERISTICS FOR 74HCT

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	Tamb ${ }^{\circ}{ }^{\text {C }}$)							UNIT	TEST CONDITIONS	
		74HCT								$V_{c c}$ (V)	OTHER
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $V_{\text {is }} \text { to } V_{\text {os }}$		6	12		15		18	ns	4.5	$\mathrm{R}_{\mathrm{L}}=\infty ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Fig.16)
$t_{\text {PZH }}$	turn "ON" time E_{n} to $V_{\text {os }}$		19	35		44		53	ns	4.5	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Figs 17 and 18)
$\mathrm{t}_{\text {PZL }}$	turn "ON" time E_{n} to $\mathrm{V}_{\text {os }}$		20	35		44		53	ns	4.5	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Figs 17 and 18)
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time E_{n} to $\mathrm{V}_{\text {os }}$		23	35		44		53	ns	4.5	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Figs 17 and 18)

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	typ.	UNIT	$V_{C C}$ (V)	$V_{i s(p-p)}$ (V)	CONDITIONS
	sine-wave distortion $\mathrm{f}=1 \mathrm{kHz}$	$\begin{aligned} & 0.80 \\ & 0.40 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.14) } \end{aligned}$
	sine-wave distortion $f=10 \mathrm{kHz}$	$\begin{aligned} & \hline 2.40 \\ & 1.20 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.14) } \end{aligned}$
	switch "OFF" signal feed-through	$\begin{aligned} & -50 \\ & -50 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	note 3	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{f}=1 \mathrm{MHz} \text { (see Figs } 10 \text { and } 15 \text {) } \end{aligned}$
	crosstalk between any two switches	$\begin{aligned} & \hline-60 \\ & -60 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	note 3	$\begin{aligned} & R_{L}=600 \Omega ; C_{L}=50 \mathrm{pF} ; \\ & \mathrm{f}=1 \mathrm{MHz} \text { (see Fig.12) } \end{aligned}$
$V_{(p-p)}$	\qquad crosstak voltage between enable or address input to any switch (peak-to-peak value)	$\begin{aligned} & 110 \\ & 220 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$		$\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ;$ $\mathrm{f}=1 \mathrm{MHz}\left(\mathrm{E}_{\mathrm{n}}\right.$, square wave between V_{CC} and GND, $t_{r}=t_{f}=6 \mathrm{~ns}$) (see Fig.13)
$\mathrm{f}_{\text {max }}$	minimum frequency response $(-3 \mathrm{~dB})$	$\begin{array}{\|l\|} \hline 150 \\ 160 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	note 4	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ (see Figs 11 and 14)
C_{S}	maximum switch capacitance	5	pF			

Notes

1. $V_{i s}$ is the input voltage at a Y_{n} or Z_{n} terminal, whichever is assigned as an input.
2. $V_{o s}$ is the output voltage at a Y_{n} or Z_{n} terminal, whichever is assigned as an output.
3. Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level $(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $600 \Omega)$.
4. Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level at $\mathrm{V}_{\text {os }}$ for $1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$.

Test conditions:
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V}$;
$R_{L}=50 \Omega ; R_{\text {source }}=1 \mathrm{k} \Omega$.

Fig. 10 Typical switch "OFF" signal feed-through as a function of frequency.

Test conditions:
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V}$;
$R_{L}=50 \Omega ; R_{\text {source }}=1 \mathrm{k} \Omega$.

Fig. 11 Typical frequency response.

(a)

(b)

1222447

Fig. 12 Test circuit for measuring crosstalk between any two switches.
(a) channel ON condition; (b) channel OFF condition.

The crosstalk is defined as follows (oscilloscope output):

Fig. 13 Test circuit for measuring crosstalk between control and any switch.

Fig. 14 Test circuit for measuring sine-wave distortion and minimum frequency response.

Fig. 15 Test circuit for measuring switch "OFF" signal feed-through.

Quad bilateral switches

AC WAVEFORMS

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \%$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. $\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 16 Waveforms showing the input $\left(\mathrm{V}_{\text {is }}\right)$ to output $\left(\mathrm{V}_{\text {os }}\right)$ propagation delays.

Quad bilateral switches

TEST CIRCUIT AND WAVEFORMS

Conditions

TEST	SWITCH	$\mathbf{V}_{\text {is }}$
$t_{\text {PZH }}$	$G N D$	$\mathrm{~V}_{\mathrm{CC}}$
$\mathrm{t}_{\mathrm{PZL}}$	V_{CC}	GND
$t_{\text {PHZ }}$	GND	V_{CC}
$t_{\text {PLZ }}$	V_{CC}	GND
others	open	pulse

$C_{L}=$ load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).
$\mathrm{R}_{\mathrm{T}}=$ termination resistance should be equal to the output
impedance Z_{O} of the pulse generator.
$t_{r}=t_{f}=6 \mathrm{~ns}$; when measuring $f_{\text {max }}$, there is no constraint t_{r}, t_{f} with 50% duty factor.

FAMILY	AMPLITUDE	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{t}_{\mathbf{r}} ; \mathbf{t}_{\mathbf{f}}$	
			$\mathbf{f}_{\text {max }} ;$ PULSE WIDTH	OTHER
	V_{CC}	50%	$<2 \mathrm{~ns}$	6 ns
74 HCT	3.0 V	1.3 V	$<2 \mathrm{~ns}$	6 ns

Fig. 18 Test circuit for measuring AC performance.
$C_{L}=$ load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).
$\mathrm{R}_{\mathrm{T}}=$ termination resistance should be equal to the output impedance Z_{0} of the pulse generator.
$t_{r}=t_{f}=6 \mathrm{~ns}$; when measuring $f_{\text {max }}$, there is no constraint t_{r}, t_{f} with 50% duty factor.

FAMILY	AMPLITUDE	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{t}_{\mathbf{r}} ; \mathbf{t}_{\mathbf{f}}$	
			$\mathbf{f}_{\text {max }} ;$ PULSE WIDTH	OTHER
	V_{CC}	50%	$<2 \mathrm{~ns}$	6 ns
74 HCT	3.0 V	1.3 V	$<2 \mathrm{~ns}$	6 ns

Fig. 19 Input pulse definitions.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

