
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

74HC/HCT367

FEATURES

- Non-inverting outputs
- Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT367 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7. The 74HC/HCT367 are hex non-inverting buffer/line drivers with 3-state outputs. The 3-state outputs (nY) are controlled by the output enable inputs $(1\overline{OE}, 2\overline{OE})$.

A HIGH on $n\overline{OE}$ causes the outputs to assume a high impedance OFF-state.

The "367" is identical to the "368" but has non-inverting outputs.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TY	PICAL	UNIT	
SYMBOL	FARAMETER	CONDITIONS	нс	нст		
t _{PHL} / t _{PLH}	propagation delay nA to nY	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	8	11	ns	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per buffer	notes 1 and 2	30	32	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz

f_o = output frequency in MHz

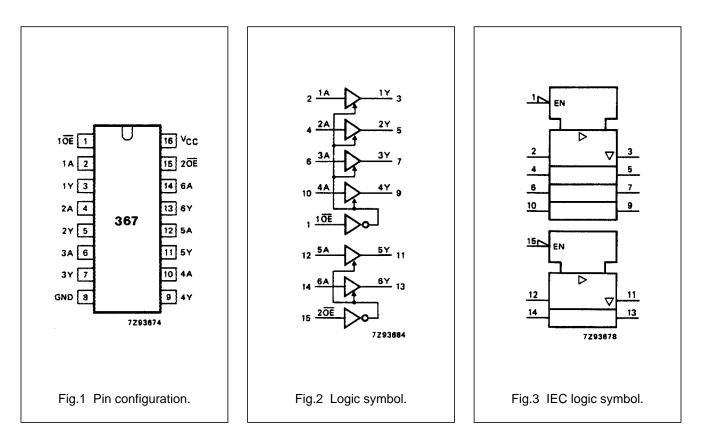
 $\Sigma~(C_L \times V_{CC}{}^2~\times f_o)$ = sum of outputs

 C_L = output load capacitance in pF

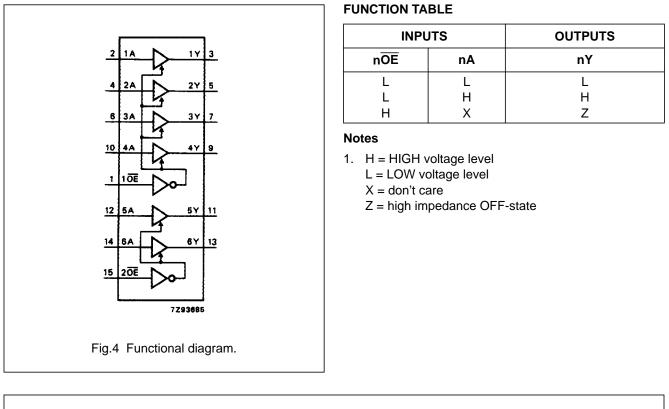
 V_{CC} = supply voltage in V

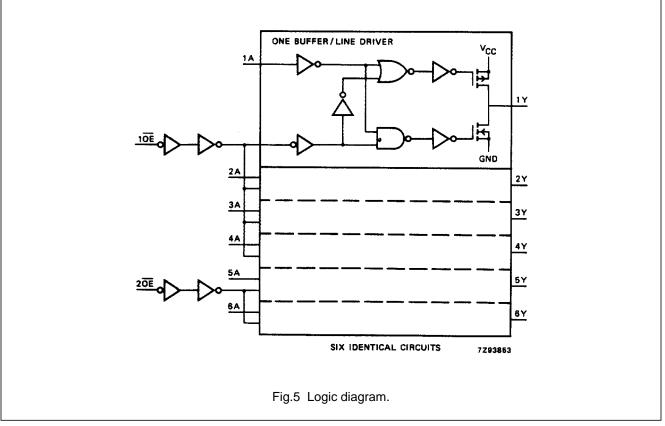
2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V

ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".

Product specification


74HC/HCT367


PIN DESCRIPTION

PIN NO. SYMBOL		NAME AND FUNCTION	
1, 15	10E, 20E	output enable inputs (active LOW)	
2, 4, 6, 10, 12, 14	1A to 6A	data inputs	
3, 5, 7, 9, 11, 13	1Y to 6Y	data outputs	
8	GND	ground (0 V)	
16	V _{CC}	positive supply voltage	

74HC/HCT367

74HC/HCT367

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL		T _{amb} (°C)								TEST CONDITIONS	
	PARAMETER	74HC									WAVEFORMS
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(,,	
t _{PHL} / t _{PLH}	propagation delay		28	95		120		145	ns	2.0	Fig.6
	nA to nY		10	19		24		29		4.5	
			8	16		20		25		6.0	
t _{PZH} / t _{PZL}	3-state output enable time		44	150		190		225	ns	2.0	Fig.7
	nOE to nY		16	30		38		45		4.5	
			13	26		33		38		6.0	
t _{PHZ} / t _{PLZ}	3-state output disable time		55	150		190		225	ns	2.0	Fig.7
	nOE to nY		20	30		38		45		4.5	
			16	26		33		38		6.0	
t _{THL} / t _{TLH}	output transition time		14	60		75		90	ns	2.0	Fig.6
			5	12		15		18		4.5	
			4	10		13		15		6.0	

74HC/HCT367

DC CHARACTERISTICS FOR 74HCT

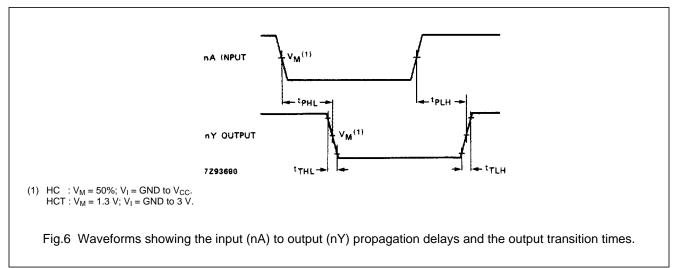
For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

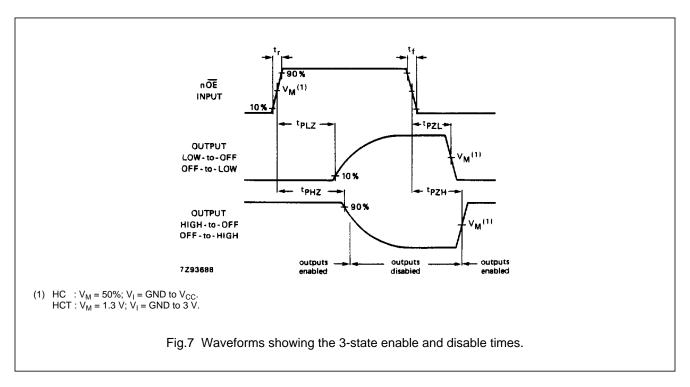
Output capability: bus driver I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT							
1 0E	1.00							
2 0E	0.90							
nA	1.00							


AC CHARACTERISTICS FOR 74HCT


GND = 0 V; $t_r = t_f = 6 ns$; $C_L = 50 pF$

SYMBOL		T _{amb} (°C)								TEST CONDITIONS	
	PARAMETER	74HCT							UNIT		WAVEFORMS
		+25			-40 to +85		-40 to +125			V _{CC} (V)	WAVEFORING
		min.	typ.	max.	min.	max.	min.	max.		(-)	
t _{PHL} / t _{PLH}	propagation delay nA to nY		14	25		31		38	ns	4.5	Fig.6
t _{PZH} / t _{PZL}	3-state output enable time nOE to nY		16	35		44		53	ns	4.5	Fig.7
t _{PHZ} / t _{PLZ}	3-state output disable time nOE to nY		21	35		44		53	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.6

74HC/HCT367

AC WAVEFORMS

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".