INTEGRATED CIRCUITS

Product specification

1991 Jan 02

IC15 Data Handbook

Philips Semiconductors

74F552

FEATURES

- 8-bit bidirectional I/O port with handshake
- Register status flag flip-flops
- Separate clock enable and output enable
- Parity generation and parity check
- B outputs and parity output sink 64mA

DESCRIPTION

The 74F522 Octal Registered Transceiver contains two 8-bit registers for temporary storage of data flowing in either direction. Each register has its own clock (CPR, CPS) and Clock Enable (CER, CES) inputs, as well as a flag flip-flop that is set automatically as the register is loaded. The flag output will be reset when the Output Enable returns to High after reading the output port. Each register has a separate Output Enable (OEAS, OEBR) for its 3-State buffer. The separate Clocks, Flags and Enables provide considerable flexibility as I/O ports for demand-response data transfer. When data is transferred from the A port to the B port, a parity bit is generated. On the other hand, when data is transferred from the B port to the A port, the parity of input data on B0–B7 is checked.

TYPE TYPICAL f _{MAX}		TYPICAL SUPPLY CURRENT (TOTAL)
74F552	85MHz	120mA

ORDERING INFORMATION

DESCRIPTION	$\begin{array}{l} \text{COMMERCIAL RANGE} \\ \text{V}_{\text{CC}} = 5\text{V}\pm10\%, \\ \text{T}_{amb} = 0^{\circ}\text{C to} + 70^{\circ}\text{C} \end{array}$	PKG DWG #		
28-Pin Plastic DIP (600mil)	N74F552N	SOT117-2		
28-Pin Plastic SOL	N74F552D	SOT136-1		

LOGIC SYMBOL

PIN CONFIGURATION

B4 1		28 B3
B5 2		27 B2
B6 3		26 B1
B7 4		25 B0
OEBR 5		24 FR
CPR 6		23 PARITY
CER 7		22 GND
V _{CC} 8		21 CES
ERROR 9		20 CPS
FS 10		19 OEAS
A7 11		18 A0
A6 12		17 A1
A5 13		16 A2
A4 14		15 A3
	S	F01039

LOGIC SYMBOL (IEEE/IEC)

74F552

Product specification

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A0–A7	A Data inputs	3.5/1.0	70µA/0.6mA
B0–B7	B Data inputs	3.5/1.0	70µA/0.6mA
CPR	R registers clock input (active rising edge)	1.0/1.0	20µA/0.6mA
CPS	S registers clock input (active rising edge)	1.0/1.0	20µA/0.6mA
CER	R registers clock Enable input (active Low)	1.0/1.0	20µA/0.6mA
CES	S registers clock Enable input (active Low)	1.0/1.0	20µA/0.6mA
OEBR	A-to-B Output Enable input (active Low) and clear FS output (active Low)	1.0/2.0	20μΑ/1.2mA
OEAS	B-to-A Output Enable input (active Low) and clear FR output (active Low)	1.0/2.0	20µA/1.2mA
DADITY	Parity bit transceiver input	3.5/1.0	70µA/0.6mA
PARIT	Parity bit transceiver output	750/106.7	15mA/64mA
ERROR	Parity check output (active Low)	50/33.3	1.0mA/20mA
A0–A7	A Data outputs	150/40	3.0mA/24mA
B0–B7	B Data outputs	750/106.7	15mA/64mA
FR	A-to-B Status Flag output (active High)	50/33.3	1.0mA/20mA
FS	B-to-A Status Flag output (active High)	50/33.3	1.0mA/20mA

NOTE: One (1.0) FAST Unit Load is defined as: 20µA in the High state and 0.6mA in the Low state.

FUNCTIONAL DESCRIPTION

Data applied to the A inputs are entered and stored on the rising edge of the CPR clock pulse, provided that the CER is Low; simultaneously, the status flip-flop is set and the A-to-B flag (FR) output goes High. As the CER returns to High, the data will be held in R register. This data entered from the A inputs will appear at the B port I/O pins after the OEBR has gone Low. When OEBR is Low, a parity bit appears at the PARITY pin, which will be set High when there is an even number of 1s or all 0s at the Q outputs of the R register. After the data is assimilated, the receiving system clears the flag FR, by changing the signal at the OEBR pin from Low to High. Data flow from B-to-A proceeds in the same manner described for A-to-B flow. A Low at the CES pin and a Low-to-High transition at the CPS pin enters the B input data and the parity input data into the S register and the parity register respectively and set the flag output FS to High. A Low signal at the OEAS pin enables the A port I/O pins and a Low-to-High transition of the OEAS signal clears the FS flag. When OEAS is Low, the parity check output ERROR will be High if there is an odd number of 1s at the Q outputs of the S register and the parity register.

R or S REGISTER FUNCTION TABLE

11	NPUTS		OUTPUTS	OPERATING		
An or Bn	СРХ	CEX	INTERNAL Q	MODE		
Х	Х	Н	NC	Hold data		
L H	$\stackrel{\uparrow}{\leftarrow}$	L	L H	Load data		
Х	Ŧ	L	NC	Keep old data		

H = High voltage level

L = Low voltage level

NC= No change

X = Don't care

 $X = R \text{ or } S \text{ for } CPX \text{ and } \overline{CEX}$ \uparrow = Low-to-High transition

 $\hat{+}$ = Not Low-to-High transition

OUTPUT CONTROL TABLE

INPUT	OUT	OPERATING	
OEXX	INTERNAL Q	An or Bn	MODE
Н	Х	Z	Disable outputs
L	L H	L H	Enable outpus

H = High voltage level L = Low voltage level

X = Don't care

XX= AS or BR

Z = High impedance "off" state

74F552

R or S FLAG FUNCTION TABLE

INPUTS		OUTPUTS	OPERATING		
CEX	СРХ	OEXX	FR or FS	MODE	
н	Х	†	NC	Hold flag	
L	\uparrow	1 1	Н	Set flag	
Х	Х	\uparrow	L	Clear flag	

H = High voltage level

L = Low voltage level NC= No change

X = Don't care

 $X = R \text{ or } S \text{ for } CPX \text{ and } \overline{CEX}$

XX= AS or BR

 \uparrow = Low-to-High transition

 \uparrow = Not Low-to-High transition

PARITY CHECK FUNCTION TABLE

PARITY GENERATION FUNCTION TABLE

INP	UTS	OUTPUTS		
OEBR	CPR	Number of Highs in the Q outputs of the R register	PARITY	OPERATING MODE
н	Х	Х	Z	Hold flag
L	$\stackrel{\uparrow}{\uparrow}$	0,2,4,6,8 1,3,5,7	H L	Load data

H = High voltage level

L = Low voltage level

 $\begin{array}{l} X = Don't care \\ Z = High impedance "off" state \\ \uparrow = Low-to-High transition \end{array}$

	INPUTS		OUTPUTS			
OEAS	CPS	PARITY	Number of Highs in the Q outputs of the R register	ERROR	OPERATING MODE	
H L L L	X ↑↑ ↑	X L L H H	X 0,2,4,6,8 1,3,5,7 0,2,4,6,8 1,3,5,7	H L H H L	Parity check	

H = High voltage level L = Low voltage level

 $\begin{array}{l} X = Don't care \\ \uparrow = Low-to-High transition \end{array}$

74F552

LOGIC DIAGRAM

74F552

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V _{CC}	Supply voltage		-0.5 to +7.0	V
V _{IN}	Input voltage	-0.5 to +7.0	V	
I _{IN}	Input current	-30 to +V _{CC}	mA	
V _{OUT}	Voltage applied to output in High output state	–0.5 to +V _{CC}	V	
		FR, FS, ERROR	40	mA
IOUT	Input current Voltage applied to output in High output state Current applied to output in Low output state	A0–A7	48	mA
		128	mA	
T _{amb}	Operating free-air temperature range	0 to +70	°C	
T _{stg}	Storage temperature		-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

SYMPOL	DADAMETED		LINUT			
STWBOL	PARAMETER		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	Supply voltage				V
V _{IH}	High-level input voltage		2.0			V
V _{IL}	Low-level input voltage			0.8	V	
I _{IK}	Input clamp current			-18	mA	
I _{IK}		FR, FS, ERROR			-1	mA
	High-level output current	A0–A7			-3	mA
		B0–B7, PARITY			-15	mA
		FR, FS, ERROR			20	mA
I _{OL}	Low-level output current	A0–A7			24	mA
				64	mA	
T _{amb}	Operating free-air temperature range		0		70	°C

74F552

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

					LIMITS					
SYMBOL	PARAM	METER		TEST CONDITIONS ^{NO TAG}			MIN	TYP NO TAG	MAX	UNIT
					L _ 1mA	±10%V _{CC}	2.5			V
		гк, гэ	, ERROR		OH = - IIIIA	$\pm 5\% V_{CC}$	2.7	3.4		V
Vou	High-level output	level output		$V_{CC} = MIN,$ $V_{U} = MAX$	lou = _3mA	$\pm 10\% V_{CC}$	2.4			V
VОН	voltage			$V_{IH} = MIN$		±5%V _{CC}	2.7	3.3		V
		B0B7	PARITY		$l_{ou} = -15 mA$	$\pm 10\% V_{CC}$	2.0			V
		D0 D1				±5%V _{CC}	2.0			V
		FR FS	FRROR	1 ₀₁ = 20mA ±		$\pm 10\% V_{CC}$		0.30	0.50	V
		110	ERROR		10[- 2011/1	±5%V _{CC}		0.30	0.50	V
Voi	Low-level output	A0-A7		$V_{CC} = MIN,$ $V_{III} = MAX.$	$l_{ol} = 24 \text{mA}$	±10%V _{CC}		0.35	0.50	V
VOL	voltage			$V_{IH} = MIN$	$\pm 5\% V_{CC}$	±5%V _{CC}		0.35	0.50	V
		B0_B7	PARITY		I _{OL} = 48mA	$\pm 10\% V_{CC}$		0.38	0.55	V
					I _{OL} = 64mA	±5%V _{CC}		0.42	0.55	V
V _{IK}	Input clamp voltage	9		$V_{CC} = MIN, I_I = I_{IK}$			-0.73	-1.2	V	
	Input current at	others		$V_{CC} = MAX, V_I = 7.0V$				100	μΑ	
lı	maximum input voltage	A0–A7 PARIT	В0–В7, И	V _{CC}	= 5.5V, V _I = 5.5	V			1	mA
I _{IH}	High-level input current	other A0–A P/	rs except 7, B0–B7, ARITY	V _{CC}	= MAX, V _I = 2.7	V			20	μΑ
L.,	Low-level input	0	thers	Vaa					-0.6	mA
ΊL	current	OEA	S, OEBA	VCC	= V AX, V = 0.0				-1.2	mA
I _{OZH} +I _{IH}	Off-state output cur High-level voltage a	rent applied	A0–A7,	V _{CC} :	= MAX, V _O = 2.	7V			70	μΑ
I _{OZL} +I _{IL}	Off-state output cur Low-level voltage a	rent pplied	PARITY	V _{CC} :	= MAX, V _O = 0.4	5V			-600	μΑ
I _{OS}	Short-circuit output	A0–A7 ERROF	FS, FR, R		V _{CC} = MAX		-60		-150	mA
	current ^{NO TAG}	B0–B7	PARITY				-100		-225	mA
		l	ССН					115	170	mA
I _{CC}	Supply current (total)	I	CCL		$V_{CC} = MAX$			125	185	mA
		l	CCZ					120	180	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value under the recommended operating conditions for the applicable type.

 All typical values are at V_{CC} = 5V, T_{amb} = 25°C.
Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, IOS should be performed last.

74F552

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	T _a V C _L = 5	amb = +25° ′ _{CC} = +5.0 50pF, R _L =	°C V 500Ω	T _{amb} = 0°C V _{CC} = +5. C _L = 50pF,	UNIT	
			MIN	TYP	MAX	MIN	MAX	
f _{MAX}	Maximum Clock Frequency	Waveform 1	70	85		60		MHz
t _{PLH} t _{PHL}	Propagation delay CPS to An or CPR to Bn	Waveform 1	3.5 4.0	5.0 6.0	8.0 9.0	3.0 3.5	8.5 9.0	ns ns
t _{PLH}	Propagation delay CPS to FS or CPR to FR	Waveform 1	3.0	5.0	7.5	2.5	8.5	ns
t _{PHL}	Propagation delay OEAS to FS or OEBR to FR	Waveform 2	4.0	6.0	8.5	3.5	9.0	ns
t _{PLH} t _{PHL}	Propagation delay CPS to ERROR	Waveform 4	6.5 7.5	13.0 11.5	16.5 15.0	6.0 7.0	18.0 16.0	ns ns
t _{PLH} t _{PHL}	Propagation delay CPR to PARITY	Waveform 4	6.5 10.5	8.5 13.5	11.0 17.0	5.5 10.0	12.5 18.0	ns ns
t _{PLH} t _{PHL}	Propagation delay OEAS to ERROR	Waveform NO TAG	3.5 3.0	5.5 5.0	8.0 7.0	3.0 2.5	8.5 8.0	ns ns
t _{PZH} t _{PZL}	Output Enable time OEAS to An or OEBR to Bn	Waveform NO TAG Waveform NO TAG	2.5 4.0	4.0 6.5	7.0 9.5	2.0 4.0	8.0 10.5	ns ns
t _{PHZ} t _{PLZ}	Output Disable time OEAS to An or OEBR to Bn	Waveform NO TAG Waveform NO TAG	2.0 2.0	4.0 3.5	7.0 7.0	1.5 1.5	8.5 7.5	ns ns
t _{PZH} t _{PZL}	Output Enable time OEBR to PARITY	Waveform NO TAG Waveform NO TAG	2.0 4.0	4.0 5.5	7.0 8.0	2.0 3.0	7.5 9.0	ns ns
t _{PHZ} t _{PLZ}	Output Disable time OEBR to PARITY	Waveform NO TAG Waveform NO TAG	2.0 2.0	4.0 4.0	7.0 7.5	2.0 2.0	7.5 8.0	ns ns

AC ELECTRICAL CHARACTERISTICS

		TEST CONDITIONS						
SYMBOL	PARAMETER		$T_{amb} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50pF, R_{L} = 500\Omega$			T _{amb} = 0°C V _{CC} = +5. C _L = 50pF,	UNIT	
			MIN	ТҮР	MAX	MIN	MAX	
t _s (H) t _s (L)	Setup time, High or Low An or Bn or PARITY to CPS or CPR	Waveform 5	7.5 4.5			8.5 5.5		ns
t _h (H) t _h (L)	Hold time, High or Low An or Bn or PARITY to CPS or CPR	Waveform 5	0 0			0 0		ns
t _s (H) t _s (L)	Setup time, High or Low CES to CPS or CER to CPR	Waveform 5	7.0 7.0			7.5 7.5		ns
t _h (H) t _h (L)	Hold time, High or Low CES to CPS or CER to CPR	Waveform 5	0 0			0 0		ns
t _w (H) t _w (L)	CPS or CPR Pulse width, High or Low	Waveform 1	5.0 6.5			6.5 7.5		ns
t _{REC}	Recovery time OEBR to CPR or OEAS to CPS	Waveform 6	14.5			16.5		ns

74F552

AC WAVEFORMS

For all waveforms, $V_M = 1.5V$.

The shaded areas indicate when the input is permitted ot change for predictable output.

Waveform 1. Propagation Delay, Clock Input to Output and Maximum Clock Frequency

Waveform 3. Propagation Delay, Output Enable to ERROR

Waveform 5. Data Setup and Hold Times

Waveform 7. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 2. Propagation Delay, Output Enable to Flag Output

Waveform 4. Propagation Delay, Clock to PARITY and ERROR

Waveform 6. Recovery Time from Output Enable to Clock

Waveform 8. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

74F552

TEST CIRCUIT AND WAVEFORM

DIP28: plastic dual in-line package; 28 leads (600 mil); long body

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	с	D ⁽¹⁾	Е ⁽¹⁾	e	e ₁	L	ME	м _н	w	Z ⁽¹⁾ max.
mm	5.08	0.51	3.94	1.63 1.14	0.56 0.43	0.38 0.25	37.08 35.94	14.22 13.84	2.54	15.24	3.51 3.05	15.75 15.24	17.65 15.24	0.25	2.10
inches	0.200	0.020	0.155	0.064 0.045	0.022 0.017	0.015 0.010	1.460 1.415	0.560 0.545	0.100	0.600	0.138 0.120	0.62 0.60	0.695 0.600	0.01	0.083

5 - I scale ህ 14

10 mm

Note

ህ

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.

OUTLINE		REFER	EUROPEAN				
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT117-2		MS-011AB				95-03-11	

Product specification

74F552

SOT117-2

SOT136-1

075E06

MS-013AE

Octal registered transceiver with parity and flags (3-State)

SO28: plastic small outline package; 28 leads; body width 7.5mm

74F552

SOT136-1

95-01-24

97-05-22

 \odot

Ŧ

NOTES

13

74F552

74F552

Data sheet status

Data sheet status	Product status	Definition ^[1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

Document order number:

print code

Date of release: 10-98 9397-750-05137

Let's make things better.

