74F534 Octal D-Type Flip-Flop with 3-STATE Outputs

FAIRCHILD

SEMICONDUCTOR

74F534 Octal D-Type Flip-Flop with 3-STATE Outputs

General Description

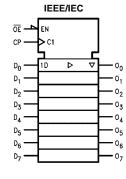
The 74F534 is a high speed, low-power octal D-type flipflop featuring separate D-type inputs for each flip-flop and 3-STATE outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable (\overline{OE}) are common to all flipflops. The 74F534 is the same as the 74F374 except that the outputs are inverted.

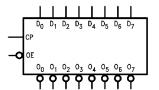
Features

- Edge-triggered D-type inputs
- Buffered positive edge-triggered clock
- 3-STATE outputs for bus-oriented applications

April 1988

Revised October 2000


Ordering Code:


Order Number	Package Number	Package Description					
74F534SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide					
74F534SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide					
74F534PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide					
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code							

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

© 2000 Fairchild Semiconductor Corporation DS009549

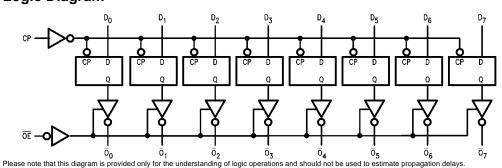
74F534

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}	
	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
D ₀ –D ₇	Data Inputs	1.0/1.0	20 µA/–0.6 mA	
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 µA/–0.6 mA	
OE	3-STATE Output Enable Input (Active LOW)	1.0/1.0	20 µA/–0.6 mA	
$\overline{O}_0 - \overline{O}_7$	Complementary 3-STATE Outputs	150/40(33.3)	–3 mA/24 mA (20 mA)	

Function Table

	Inputs		Output		
СР	OE	D	ō		
~	L	Н	L		
~	L	L	н		
L	L	х	\overline{O}_0		
х	н	Х	Z		
H = HIGH Voltage Level L = LOW Voltage Level					


HIGH Voltage Z = High Impedance X = Immaterial

 $\frac{1}{\overline{O}_0} = \text{Value stored from previous clock cycle}$

Logic Diagram

Functional Description

The 74F534 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE complementary outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When the OE is HIGH, the outputs go to the high impedance state. Operation of the OE input does not affect the state of the flip-flops.

Absolute Maximum Ratings(Note 1)

Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

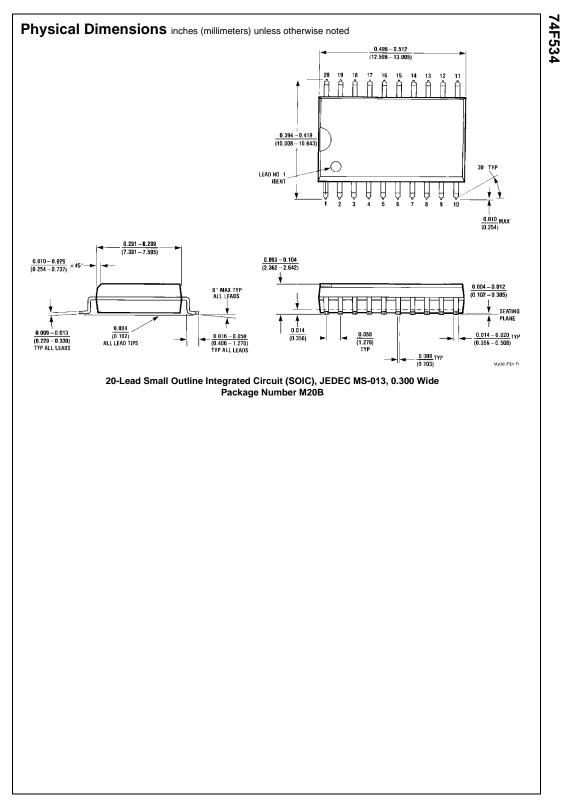
Recommended Operating Conditions

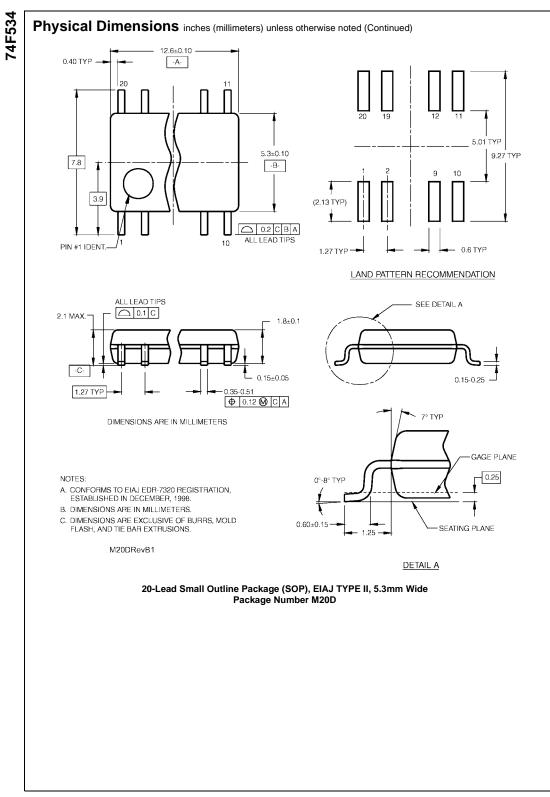
Free Air Ambient Temperature Supply Voltage 74F534

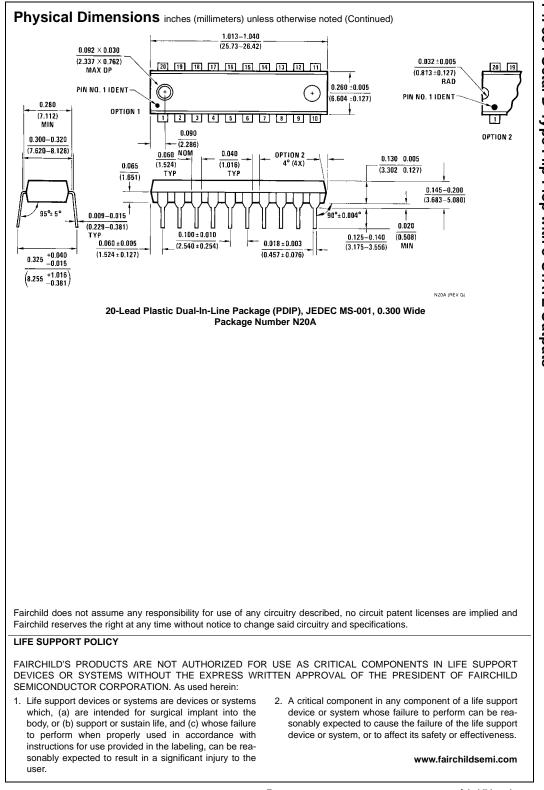
0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Paramet	ter	Min	Тур	Max	Units	V _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Volta	age			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5					I _{OH} = -1 mA
	Voltage	10% V _{CC}	2.4			V I	Min	I _{OH} = -3 mA
		5% V _{CC}	2.7				IVIIII	$I_{OH} = -1 \text{ mA}$
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA
IIH	Input HIGH Current				5.0	μΑ	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current				7.0	μA	Max	V _{IN} = 7.0V
	Breakdown Test				7.0	μΑ	IVIAX	v _{IN} = 7.0v
I _{CEX}	Output HIGH				50	μA	Max	$V_{OUT} = V_{CC}$
	Leakage Current				50	μΛ	IVIAA	VOUT - VCC
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA
	Test		4.75			v	0.0	All Other Pins Grounded
I _{OD}	Output Leakage				3.75	μA	0.0	$V_{IOD} = 1.50 \ \mu A$
	Circuit Current				5.75	μΛ	0.0	All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V
I _{OZH}	Output Leakage Curren	t			50	μΑ	Max	$V_{OUT} = 2.7V$
I _{OZL}	Output Leakage Curren	t			-50	μΑ	Max	$V_{OUT} = 0.5V$
I _{OS}	Output Short-Circuit Cu	rrent	-60		-150	mA	Max	$V_{OUT} = 0V$
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	$V_{OUT} = 5.25V$
I _{CCZ}	Power Supply Current			55	86	mA	Max	V _O = HIGH Z


Symbol	Parameter		T _A = +25°C V _{CC} = +5.0V C ₁ = 50 pF			$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_1 = 50 \text{ pF}$	
		Min	Typ	Max	Min	Max	Min	Max	-
f _{MAX}	Maximum Clock Frequency	100			60		70		MHz
t _{PLH}	Propagation Delay	4.0	6.5	8.5	4.0	10.5	4.0	10.0	
t _{PHL}	CP to On	4.0	6.5	8.5	4.0	11.0	4.0	10.0	ns
t _{PZH}	Output Enable Time	2.0	9.0	11.5	2.0	14.0	2.0	12.5	
t _{PZL}		2.0	5.8	7.5	2.0	10.0	2.0	8.5	
t _{PHZ}	Output Disable Time	1.5	5.3	7.0	1.5	8.0	1.5	8.0	ns
t _{PLZ}		1.5	4.3	5.5	1.5	7.5	1.5	6.5	

AC Operating Requirements

		$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$		$T_A = 0^\circ C \text{ to } +70^\circ C$ $V_{CC} = +5.0V$		Units
Symbol	Parameter							
		Min	Max	Min	Мах	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	2.0		2.0		2.0		
t _S (L)	D _n to CP	2.0		2.5		2.0		
t _H (H)	Hold Time, HIGH or LOW	2.0		2.0		2.0		ns
t _H (L)	D _n to CP	2.0		2.5		2.0		
t _W (H)	CP Pulse Width	7.0		7.0		7.0		20
t _W (L)	HIGH or LOW	6.0		6.0		6.0		ns

