

Functional Description

The 74F283 adds two 4-bit binary words (A plus B) plus the incoming Carry $\left(\mathrm{C}_{0}\right)$. The binary sum appears on the Sum ($\mathrm{S}_{0}-\mathrm{S}_{3}$) and outgoing carry $\left(\mathrm{C}_{4}\right)$ outputs. The binary weight of the various inputs and outputs is indicated by the subscript numbers, representing powers of two.

$$
\begin{gathered}
2^{0}\left(A_{0}+B_{0}+C_{0}\right)+2^{1}\left(A_{1}+B_{1}\right) \\
+2^{2}\left(A_{2}+B_{2}\right)+2^{3}\left(A_{3}+B_{3}\right) \\
=S_{0}+2 S_{1}+4 S_{2}+8 S_{3}+16 C_{4}
\end{gathered}
$$

Where (+) = plus

Interchanging inputs of equal weight does not affect the operation. Thus $\mathrm{C}_{0}, \mathrm{~A}_{0}, \mathrm{~B}_{0}$ can be arbitrarily assigned to pins 5,6 and 7 for DIPS, and 7, 8 and 9 for chip carrier packages. Due to the symmetry of the binary add function, the 74F283 can be used either with all inputs and outputs active HIGH (positive logic) or with all inputs and outputs active LOW (negative logic). See Figure 1. Note that if C_{0} is not used it must be tied LOW for active HIGH logic or tied HIGH for active LOW logic.
Due to pin limitations, the intermediate carries of the 74F283 are not brought out for use as inputs or outputs.

However, other means can be used to effectively insert a carry into, or bring a carry out from, an intermediate stage. Figure 2 shows how to make a 3 -bit adder. Tying the operand inputs of the fourth adder $\left(\mathrm{A}_{3}, \mathrm{~B}_{3}\right)$ LOW makes S_{3} dependent only on, and equal to, the carry from the third adder. Using somewhat the same principle, Figure 3 shows a way of dividing the 74F283 into a 2 -bit and a 1 -bit adder. The third stage adder $\left(\mathrm{A}_{2}, \mathrm{~B}_{2}, \mathrm{~S}_{2}\right)$ is used merely as a means of getting a carry $\left(\mathrm{C}_{10}\right)$ signal into the fourth stage (via A_{2} and B_{2}) and bringing out the carry from the second stage on S_{2}. Note that as long as A_{2} and B_{2} are the same, whether HIGH or LOW, they do not influence S_{2}. Similarly, when A_{2} and B_{2} are the same the carry into the third stage does not influence the carry out of the third stage. Figure 4 shows a method of implementing a 5 -input encoder, where the inputs are equally weighted. The outputs $\mathrm{S}_{0}, \mathrm{~S}_{1}$ and S_{2} present a binary number equal to the number of inputs I_{1} I_{5} that are true. Figure 5 shows one method of implementing a 5 -input majority gate. When three or more of the inputs $I_{1}-I_{5}$ are true, the output M_{5} is true.

| | $\mathbf{C}_{\mathbf{0}}$ | $\mathbf{A}_{\mathbf{0}}$ | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{B}_{\mathbf{0}}$ | $\mathbf{B}_{\mathbf{1}}$ | $\mathbf{B}_{\mathbf{2}}$ | $\mathbf{B}_{\mathbf{3}}$ | $\mathbf{S}_{\mathbf{0}}$ | $\mathbf{S}_{\mathbf{1}}$ | $\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{3}}$ | $\mathbf{C}_{\mathbf{4}}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Logic Levels | L | L | H | L | H | H | L | L | H | H | H | L | L | H |
| Active HIGH | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
| Active LOW | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |

FIGURE 1. Active HIGH versus Active LOW Interpretation

FIGURE 2. 3-Bit Adder

FIGURE 4. 5-Input Encoder

FIGURE 3. 2-Bit and 1-Bit Adders

FIGURE 5. 5-Input Majority Gate

Absolute Maximum Ratings(Note 1)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias $V_{C C}$ Pin Potential to Ground Pin Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
3-STATE Output
Current Applied to Output
in LOW State (Max)
ESD Last Passing Voltage (Min)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ -0.5 V to +7.0 V -0.5 V to +7.0 V
-30 mA to +5.0 mA
-0.5 V to V_{CC} -0.5 V to +5.5 V

Recommended Operating

 Conditions| Free Air Ambient Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage | +4.5 V to +5.5 V |

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	$\mathrm{V}_{\text {cc }}$	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & \hline 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage			0.5	V	Min	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$
$\overline{1_{\mathrm{H}}}$	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\bar{l}_{\text {BVI }}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$\overline{I_{\text {cex }}}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
I_{OD}	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
ILL	Input LOW Current			$\begin{aligned} & \hline-0.6 \\ & -1.2 \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{C}_{\mathrm{O}}\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) \end{aligned}$
Ios	Output Short-Circuit Current	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {CCH }}$	Power Supply Current		36	55	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current		36	55	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	Min	Max	
${ }_{\text {tpLH }}$	Propagation Delay	3.5	7.0	9.5	3.5	14.0	3.5	11.0	
$\mathrm{t}_{\text {PHL }}$	C_{0} to S_{n}	3.0	7.0	9.5	3.0	14.0	3.0	11.0	ns
$\mathrm{tpLH}^{\text {l }}$	Propagation Delay	3.0	7.0	9.5	3.0	17.0	3.0	13.0	
${ }_{\text {tPHL }}$	A_{n} or B_{n} to S_{n}	3.0	7.0	9.5	3.0	14.0	3.0	11.5	ns
tpLH	Propagation Delay	3.0	5.7	7.5	3.0	10.5	3.0	8.5	ns
$\mathrm{t}_{\text {PHL }}$	C_{0} to C_{4}	3.0	5.4	7.0	2.5	10.0	3.0	8.0	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	3.0	5.7	7.5	3.0	10.5	3.0	8.5	
$\mathrm{t}_{\text {PHL }}$	A_{n} or B_{n} to C_{4}	2.5	5.3	7.0	2.5	10.0	2.5	8.0	

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
