

4-Bank × 1,048,576-Word × 16-Bit SYNCHRONOUS DYNAMIC RAM

## DESCRIPTION

The MD56V62160E is a 4-Bank  $\times$  1,048,576-word  $\times$  16-bit Synchronous dynamic RAM fabricated in LAPIS Semiconductor's silicon-gate CMOS technology. The device operates at 3.3 V. The inputs and outputs are LVTTL compatible.

## FEATURES

- Silicon gate, quadruple poly-silicon CMOS, 1-transistor memory cell
- 4-Bank  $\times$  1,048,576-word  $\times$  16-bit configuration
- Single 3.3 V power supply, ±0.3 V tolerances
- Input : LVTTL compatible
- Output : LVTTL compatible
- Refresh : 4096 cycles/64 ms
- Programmable data transfer mode
  - CAS Latency (2, 3)
    - Burst Length (1, 2, 4, 8, Full Page)
  - Data scramble (sequential, interleave)
- CBR auto-refresh, Self-refresh capability
- Packages:
- 54-pin 400 mil plastic TSOP (TypeII) (P-TSOP(2)54-400-0.80-UK6)

(Product: MD56V62160E-xxTA) xx indicates speed rank.

## **PRODUCT FAMILY**

| Family         | Max.      | Access Time (Max.) |                  |  |
|----------------|-----------|--------------------|------------------|--|
|                | Frequency | t <sub>AC2</sub>   | t <sub>AC3</sub> |  |
| MD56V62160E-10 | 100 MHz   | 6 ns               | 6 ns             |  |



#### **PIN CONFIGURATION (TOP VIEW)**



54-Pin Plastic TSOP(II) (K Type)

| Pin Name | Function              | Pin Name          | Function                         |
|----------|-----------------------|-------------------|----------------------------------|
| CLK      | System Clock          | UDQM, LDQM        | Data Input/ Output Mask          |
| CS       | Chip Select           | DQi               | Data Input/ Output               |
| CKE      | Clock Enable          | V <sub>CC</sub>   | Power Supply (3.3 V)             |
| A0–A11   | Address               | V <sub>SS</sub>   | Ground (0 V)                     |
| A12, A13 | Bank Select Address   | V <sub>CC</sub> Q | Data Output Power Supply (3.3 V) |
| RAS      | Row Address Strobe    | V <sub>SS</sub> Q | Data Output Ground (0 V)         |
| CAS      | Column Address Strobe | NC                | No Connection                    |
| WE       | Write Enable          |                   |                                  |

Note : The same power supply voltage must be provided to every  $V_{CC}\,\text{pin}$  and  $V_{CC}Q$  pin.

The same GND voltage level must be provided to every  $V_{SS}$  pin and  $V_{SS}Q$  pin.



## **PIN DESCRIPTION**

| CLK                    | Fetches all inputs at the "H" edge.                                                                                                                                                                                                                                           |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CS                     | Disables or enables device operation by asserting or deactivating all inputs except CLK, CKE, UDQM and LDQM.                                                                                                                                                                  |
| CKE                    | Masks system clock to deactivate the subsequent CLK operation.<br>If CKE is deactivated, system clock will be masked so that the subsequent CLK operation is<br>deactivated. CKE should be asserted at least one cycle prior to a new command.                                |
| Address                | Row & column multiplexed.Row address: RA0 - RA11Column Address: CA0 - CA7                                                                                                                                                                                                     |
| A13, A12<br>(BA0, BA1) | Slects bank to be activated during row address latch time and selects bank for precharge and read/write during column address latch time.                                                                                                                                     |
| RAS<br>CAS<br>WE       | Functionality depends on the combination. For details, see the function truth table.                                                                                                                                                                                          |
| UDQM,<br>LDQM          | Masks the read data of two clocks later when UDQM and LDQM are set "H" at the "H" edge of the clock signal. Masks the write data of the same clock when UDQM and LDQM are set "H" at the "H" edge of the clock signal. UDQM controls upper byte and LDQM controls lower byte. |
| DQi                    | Data inputs/outputs are multiplexed on the same pin.                                                                                                                                                                                                                          |

## **ELECTRICAL CHARACTERISTICS**

#### **Absolute Maximum Ratings**

| Parameter                               | Symbol                              | Value                         | Unit |
|-----------------------------------------|-------------------------------------|-------------------------------|------|
| Voltage on Any Pin Relative to $V_{SS}$ | V <sub>IN</sub> , V <sub>OUT</sub>  | –0.5 to V <sub>CC</sub> + 0.5 | V    |
| V <sub>CC</sub> Supply Voltage          | V <sub>CC</sub> , V <sub>CC</sub> Q | -0.5 to 4.6                   | V    |
| Storage Temperature                     | T <sub>stg</sub>                    | –55 to 150                    | °C   |
| Power Dissipation                       | P <sub>D⁺</sub>                     | 1000                          | mW   |
| Short Circuit Output Current            | I <sub>OS</sub>                     | 50                            | mA   |
| Operating Temperature                   | T <sub>opr</sub>                    | 0 to 70                       | °C   |
|                                         | *. To 2500                          | •                             |      |

#### \*: Ta = 25°C

## **Recommended Operating Conditions**

(Voltages referenced to  $V_{SS} = 0 V$ )

| Parameter            | Symbol Min.                         |      | Тур. | Max.                  | Unit |
|----------------------|-------------------------------------|------|------|-----------------------|------|
| Power Supply Voltage | V <sub>CC</sub> , V <sub>CC</sub> Q | 3.0  | 3.3  | 3.6                   | V    |
| Input High Voltage   | V <sub>IH</sub>                     | 2.0  |      | V <sub>CC</sub> + 0.3 | V    |
| Input Low Voltage    | V <sub>IL</sub>                     | -0.3 | —    | 0.8                   | V    |

#### **Pin Capacitance**

(V<sub>bias</sub> = 1.4 V, Ta = 25°C, f = 1 MHz)

|                                                                       |                  | ( Dia3 | ,    | ,    |
|-----------------------------------------------------------------------|------------------|--------|------|------|
| Parameter                                                             | Symbol           | Min.   | Max. | Unit |
| Input Capacitance (CLK)                                               | C <sub>CLK</sub> | 2.5    | 4    | pF   |
| Input Capacitance<br>(RAS, CAS, WE, CS, CKE, UDQM, LDQM,<br>A0 – A13) | C <sub>IN</sub>  | 2.5    | 5    | pF   |
| Input/Output Capacitance (DQ1 – DQ16)                                 | C <sub>OUT</sub> | 4      | 6.5  | pF   |



## **DC** Characteristics

| Parameter                                                | Symbol            | Condition                  |                       | MD56V<br>E-1                                                       | 62160<br>0 | Unit | Note |     |
|----------------------------------------------------------|-------------------|----------------------------|-----------------------|--------------------------------------------------------------------|------------|------|------|-----|
|                                                          |                   | Bank                       | CKE                   | Others                                                             | Min.       | Max. |      |     |
| Output High<br>Voltage                                   | V <sub>OH</sub>   | _                          | _                     | I <sub>OH</sub> =<br>-2.0mA                                        | 2.4        |      | V    |     |
| Output Low<br>Voltage                                    | V <sub>OL</sub>   |                            |                       | I <sub>OL</sub> =<br>2.0mA                                         |            | 0.4  | V    |     |
| Input Leakage<br>Current                                 | ILI               | _                          |                       | —                                                                  | -10        | 10   | μA   |     |
| Output Leakage<br>Current                                | ILO               | _                          | _                     | —                                                                  | -10        | 10   | μA   |     |
| Average Power                                            | I <sub>CC1</sub>  | One Bank<br>Active         | CKE ≥ V <sub>IH</sub> | t <sub>CC</sub> = Min.<br>t <sub>RC</sub> = Min.<br>No Burst       |            | 70   | mA   | 1,2 |
| Supply Current<br>(Operating)                            | I <sub>CC1D</sub> | Both<br>Banks<br>Active    | $CKE \ge V_{IH}$      | $t_{CC}$ = Min.<br>$t_{RC}$ = Min.<br>$t_{RRD}$ = Min.<br>No Burst | _          | 115  | mA   | 1,2 |
| Power Supply<br>Current<br>(Standby)                     | I <sub>CC2</sub>  | Both<br>Banks<br>Precharge | $CKE \geq V_{IH}$     | t <sub>CC</sub> = Min.                                             |            | 30   | mA   | 3   |
| Average Power<br>Supply Current<br>(Clock<br>Suspension) | I <sub>CC3S</sub> | Both<br>Banks<br>Active    | CKE ≤ V <sub>IL</sub> | t <sub>CC</sub> = Min.                                             | _          | 3    | mA   | 2   |
| Average Power<br>Supply Current<br>(Active Standby)      | I <sub>CC3</sub>  | One Bank<br>Active         | $CKE \geq V_{IH}$     | t <sub>CC</sub> = Min.                                             |            | 30   | mA   | 3   |
| Power Supply<br>Current (Burst)                          | I <sub>CC4</sub>  | Both<br>Banks<br>Active    | $CKE \geq V_{IH}$     | t <sub>CC</sub> = Min.                                             |            | 90   | mA   | 1,2 |
| Power Supply<br>Current<br>(Auto-Refresh)                | I <sub>CC5</sub>  | One Bank<br>Active         | $CKE \ge V_{IH}$      | t <sub>CC</sub> = Min.<br>t <sub>RC</sub> = Min.                   |            | 115  | mA   | 2   |
| Average Power<br>Supply Current<br>(Self-Refresh)        | I <sub>CC6</sub>  | Both<br>Banks<br>Precharge | CKE≤ V <sub>IL</sub>  | t <sub>CC</sub> = Min.                                             | _          | 2    | mA   |     |
| Average Power<br>Supply Current<br>(Power Down)          | I <sub>CC7</sub>  | Both<br>Banks<br>Precharge | $CKE \leq V_{IL}$     | t <sub>CC</sub> = Min.                                             |            | 2    | mA   |     |

Notes: 1. Measured with outputs open.

The address and data can be changed once or left unchanged during one cycle.
The address and data can be changed once or left unchanged during two cycles. DC

#### Mode Set Address Keys

| 5  | Single Write | CAS Latency |    | Burst Type |          | Burst Length |            |    |    |    |           |          |
|----|--------------|-------------|----|------------|----------|--------------|------------|----|----|----|-----------|----------|
| A9 | BRSW         | A6          | A5 | A4         | CL       | A3           | BT         | A2 | A1 | A0 | BT = 0    | BT = 1   |
| 0  | Normal       | 0           | 0  | 0          | Reserved | 0            | Sequential | 0  | 0  | 0  | 1         | 1        |
| 1  | Single Write | 0           | 0  | 1          | Reserved | 1            | Interleave | 0  | 0  | 1  | 2         | 2        |
|    |              | 0           | 1  | 0          | 2        |              |            | 0  | 1  | 0  | 4         | 4        |
|    |              | 0           | 1  | 1          | 3        |              |            | 0  | 1  | 1  | 8         | 8        |
|    |              | 1           | 0  | 0          | Reserved |              |            | 1  | 0  | 0  | Reserved  | Reserved |
|    |              | 1           | 0  | 1          | Reserved |              |            | 1  | 0  | 1  | Reserved  | Reserved |
|    |              | 1           | 1  | 0          | Reserved |              |            | 1  | 1  | 0  | Reserved  | Reserved |
|    |              | 1           | 1  | 1          | Reserved |              |            | 1  | 1  | 1  | Full Page | Reserved |

Notes: A7, A8, A10, A11, A12 and A13 should stay "L" during mode set cycle.

MD56V62160E supports two methods of Power on Sequence.

#### POWER ON SEQUENCE 1

- 1. With inputs in NOP state, turn on the power supply and start the system clock.
- 2. After the  $V_{CC}$  voltage has reached the specified level, pause for 200  $\mu$ s or more with the input kept in NOP state.
- 3. Issue the precharge all bank command.
- 4. Apply a CBR auto-refresh eight or more times.
- 5. Enter the mode register setting command.

#### POWER ON SEQUENCE 2

- 1. With inputs in NOP state, turn on the power supply and start the system clock.
- 2. After the  $V_{CC}$  voltage has reached the specified level, pause for 200  $\mu$ s or more with the input kept in NOP state.
- 3. Issue the precharge all bank command.
- 4. Enter the mode register setting command.
- 5. Apply a CBR auto-refresh eight or more times.



## AC Characteristics (1/2)

|                                                 |           |                  |                       |          |       | Note1, 2 |
|-------------------------------------------------|-----------|------------------|-----------------------|----------|-------|----------|
| Parameter                                       |           | Symbol           | MD56V62               | 160 E-10 | Unit  | Note     |
|                                                 |           |                  | Min.                  | Max.     |       |          |
|                                                 | CL = 3    | t <sub>CC3</sub> | 10                    |          | ns    |          |
|                                                 | CL = 2    | t <sub>CC2</sub> | 10                    | _        | ns    |          |
| Access Time from                                | CL = 3    | t <sub>AC3</sub> | _                     | 6        | ns    | 3, 4     |
| Clock                                           | CL = 2    | t <sub>AC2</sub> |                       | 6        | ns    | 3, 4     |
| Clock High Pulse Tim                            | е         | t <sub>CH</sub>  | 3                     |          | ns    | 4        |
| Clock Low Pulse Time                            | Э         | t <sub>CL</sub>  | 3                     |          | ns    | 4        |
| Input Setup Time                                |           | t <sub>SI</sub>  | 3                     |          | ns    |          |
| Input Hold Time                                 |           | t <sub>HI</sub>  | 1                     |          | ns    |          |
| Output Low Impedance Time from Clock            |           | t <sub>OLZ</sub> | 1                     |          | ns    |          |
| Output High Impedance Time from Clock           |           | tонz             | _                     | 6        | ns    |          |
| Output Hold from Clock                          |           | t <sub>OH</sub>  | 3                     | _        | ns    | 3        |
| Random Read or Write Cycle Time                 |           | t <sub>RC</sub>  | 70                    | _        | ns    |          |
| RAS Precharge Time                              |           | t <sub>RP</sub>  | 20                    | _        | ns    |          |
| RAS Pulse Width                                 |           | t <sub>RAS</sub> | 50                    | 100,000  | ns    |          |
| RAS to CAS Delay Time                           | )         | t <sub>RCD</sub> | 20                    |          | ns    |          |
| Write Recovery Time                             |           | t <sub>WR</sub>  | 10                    | _        | ns    |          |
| RAS to CAS Bank Active                          | e Delay   | t <sub>RRD</sub> | 20                    | _        | ns    |          |
| Refresh Time                                    |           | t <sub>REF</sub> | _                     | 64       | ms    |          |
| Power-down Exit setup Time                      |           | t <sub>PDE</sub> | t <sub>SI</sub> +1CLK | _        | ns    |          |
| CAS to CAS Delay Time (Min.)                    |           | ICCD             | 1                     |          | Cycle |          |
| Clock Disable Time from CKE                     |           | ICKE             | 1                     |          | Cycle |          |
| Data Output High Impedance Time from UDQM, LDQM |           | I <sub>DOZ</sub> | 2                     |          | Cycle |          |
| Dada Input Mask Time f<br>LDQM                  | rom UDQM, | IDOD             | C                     | )        | Cycle |          |



#### AC Characteristics (2/2)

Note1, 2

|                                                                             |                  |                 |       | ,    |
|-----------------------------------------------------------------------------|------------------|-----------------|-------|------|
| Parameter                                                                   | Symbol           | MD56V62160 E-10 | Unit  | Note |
| Data Input Mask Time from Write<br>Command                                  | IDWD             | 0               | Cycle |      |
| Data Output High Impedance Time from Precharge Command                      | I <sub>ROH</sub> | CL              | Cycle |      |
| Active Command Input Time from<br>Mode Register Set Command Input<br>(Min.) | I <sub>MRD</sub> | 2               | Cycle |      |
| Write Command Input Time from<br>Output                                     | IOWD             | 2               | Cycle |      |

Notes: 1. AC measurements assume that  $t_T = 1$  ns.

- 2. The reference level for timing of input signals is 1.4 V. The input signal conditions are below.  $V_{IH} = 2.4 \text{ V}, V_{IL} = 0.4 \text{ V}$
- 3. Output load.



4. The access time is defined at 1.4 V.

5. If  $t_T$  is longer than 1 ns, then the reference level for timing of input signals is  $V_{IH}$  and  $V_{IL}$ .





## TIMING CHART





MD56V62160E



Single Bit Read-Write-Read Cycle (Same Page) @ CAS Latency = 2, Burst Length = 4



- MD56V62160E
- \*Notes: 1. When  $\overline{CS}$  is set "High" at a clock transition from "Low" to "High", all inputs except CLK, CKE, UDQM and LDQM are invalid.
  - 2. When issuing an active, read or write command, the bank is selected by A12 and A13.

| A11 | A12 | Active, read or write |
|-----|-----|-----------------------|
| 0   | 0   | Bank A                |
| 0   | 1   | Bank B                |
| 1   | 0   | Bank C                |
| 1   | 1   | Bank D                |

3. The auto precharge function is enabled or disabled by the A10 input when the read or write command is issued.

| A10 | A12 | A13 | Operation                                                   |
|-----|-----|-----|-------------------------------------------------------------|
| 0   | 0   | 0   | After the end of burst, bank A holds the idle status.       |
| 1   | 0   | 0   | After the end of burst, bank A is precharged automatically. |
| 0   | 0   | 1   | After the end of burst, bank B holds the idle status.       |
| 1   | 0   | 1   | After the end of burst, bank B is precharged automatically. |
| 0   | 1   | 0   | After the end of burst, bank C holds the idle status.       |
| 1   | 1   | 0   | After the end of burst, bank C is precharged automatically. |
| 0   | 1   | 1   | After the end of burst, bank D holds the idle status.       |
| 1   | 1   | 1   | After the end of burst, bank D is precharged automatically. |

4. When issuing a precharge command, the bank to be precharged is selected by the A10 and A11 inputs.

| A10 | A12 | A13 | Operation                 |
|-----|-----|-----|---------------------------|
| 0   | 0   | 0   | Bank A is precharged.     |
| 0   | 0   | 1   | Bank B is precharged.     |
| 0   | 1   | 0   | Bank C is precharged.     |
| 0   | 1   | 1   | Bank D is precharged.     |
| 1   | Х   | Х   | All banks are precharged. |

5. The input data and the write command are latched by the same clock (Write latency = 0).

6. The output is forced to high impedance by  $(1CLK + t_{OHZ})$  after UDQM, LDQM entry.







- \*Notes: 1. To write data before a burst read ends, UDQM and LDQM should be asserted three cycles prior to the write command to avoid bus contention.
  - 2. To assert row precharge before a burst write ends, wait t<sub>WR</sub> after the last write data input. Input data during the precharge input cycle will be masked internally.







\*Note: 1. If you set A9 to high during mode register set cycle, the write burst length is set to 1.







MD56V62160E



#### Bank Interleave Random Row Read Cycle @ CAS Latency = 2, Burst Length = 4



MD56V62160E



Bank Interleave Random Row Write Cycle @ CAS Latency = 2, Burst Length = 4









Bank Interleave Page Read Cycle @ CAS Latency = 2, Burst Length = 4

\*Note: 1.  $\overline{CS}$  is ignored when  $\overline{RAS}$ ,  $\overline{CAS}$  and  $\overline{WE}$  are high at the same cycle.











#### Bank Interleave Random Row Read/Write Cycle @CAS Latency = 2, Burst Length = 4



| Bank Interleave Page Read/Write Cycle $@\overline{CAS}$ Latency = 2, Burst Length = 4 |                                              |          |        |        |        |        |          |      |         |         |               |         |         |         |          |         |        |         |                 |
|---------------------------------------------------------------------------------------|----------------------------------------------|----------|--------|--------|--------|--------|----------|------|---------|---------|---------------|---------|---------|---------|----------|---------|--------|---------|-----------------|
| CLK                                                                                   |                                              |          | 3      | 4      | 5      | 6      | <b>7</b> | 8    | 9       | 10      | 11<br>/       | 12<br>/ | 13<br>/ | 14<br>/ | 15       | 16<br>/ | 17     | 18<br>/ | 19<br>//        |
| CKE                                                                                   |                                              |          |        |        |        |        |          | High |         |         |               |         |         |         |          |         |        |         |                 |
| <del>CS</del>                                                                         |                                              |          |        |        |        |        |          |      |         |         |               |         |         |         |          |         |        |         |                 |
| RAS                                                                                   |                                              |          | (///// | (///// | (///// | (///// | //////   | Ш    | W.      | (/////  |               | Ш       | V//     |         |          | []]]]]  | (///// | (/////  |                 |
| CAS                                                                                   | <u>///////</u> ///////////////////////////// |          | (///// | (///// | (///// | (///// | //////   | ///\ |         | (/////  | <u>      </u> | ///\    |         |         |          | []]]]]] | ()//// | ()))))) | <u>        </u> |
| ADDR                                                                                  |                                              | CAa0 X// | (///// | ()//// | (///// | (///// |          |      | 360 /// | ()////  |               | ///са   | ∞)///   | []]]]]] | []]]]]]  | []]]]]  |        | ()////  | <u>       </u>  |
| A12,<br>A13                                                                           | ΠΠΠΛ                                         |          |        |        |        |        |          | Ш    | W       |         |               | 7λ      |         |         |          |         |        | []]]]]] |                 |
| A10                                                                                   | ΠΠΠΛ                                         | П        | ()//// | ()//// | []]]]] | (1111) |          | 7Λ_  | _ Ш     | []]]]]] |               | 7/λ     |         |         |          |         |        | []]]]]] | <u>        </u> |
| DQ                                                                                    |                                              |          | {Q     | Aa0XQ  | Aa1XQ  | Aa2XQ  | Aa3)     | —(D  | B60 D   | Bb1 (DI | 3b2XDI        | Bb3)—   |         | {c      | Aco) ( C | QAc1XC  | JAc2/C | )Ac3)-  |                 |
| WE                                                                                    |                                              |          | []]]]] | ()//// | []]]]] | (///// |          | 7Λ_  | Ш       | []]]]]] |               | Ш       | V//     | []]]]]] |          | []]]]]] |        | []]]]]] |                 |
| UDQM,<br>LDQM                                                                         | Read (                                       | ¢        | d      |        |        | (///// | ,        |      |         | and     |               | Read    | Com     | mand    |          | Ш       |        | ()///// |                 |
|                                                                                       | (A-                                          | Bank)    |        |        |        |        |          | (B   | -Bank   | )       |               | (A      | A-Ban   | k)      |          |         |        |         |                 |



MD56V62160E



Clock Suspension & DQM Operation Cycle @ CAS Latency = 2, Burst Length = 4

\*Note: 1. When Clock Suspension is asserted, the next clock cycle is ignored.

2. When UDQM and LDQM are asserted, the read data after two clock cycles is masked.

3. When UDQM and LDQM are asserted, the write data in the same clock cycle is masked.

4. When LDQM is set High, the input/output data of DQ1 – DQ8 is masked.

5. When UDQM is set High, the input/output data of DQ9 – DQ16 is masked.













\*Note: 1. If row precharge is asserted before a burst read ends, then the read data will not output after  $l_{ROH}$  equals  $\overline{CAS}$  latency.











#### Power Down Mode @CAS Latency = 2, Burst Length = 4



2. To release the circuit from power-down mode, CKE has to be set high for longer than  $t_{PDE}(t_{SI} + 1CLK)$ .



## Self Refresh Cycle













|                               |    |     |     | ,  |    | · · ·   |                                                     |  |  |  |
|-------------------------------|----|-----|-----|----|----|---------|-----------------------------------------------------|--|--|--|
| Current<br>State <sup>1</sup> | CS | RAS | CAS | WE | BA | ADDR    | Action                                              |  |  |  |
| Idle                          | Н  | Х   | Х   | Х  | Х  | Х       | NOP                                                 |  |  |  |
|                               | L  | Н   | Н   | Н  | Х  | Х       | NOP                                                 |  |  |  |
|                               | L  | Н   | Н   | L  | BA | Х       | ILLEGAL <sup>2</sup>                                |  |  |  |
|                               | L  | Н   | L   | Х  | BA | CA      | ILLEGAL <sup>2</sup>                                |  |  |  |
|                               | L  | L   | Н   | Н  | BA | RA      | Row Active                                          |  |  |  |
|                               | L  | L   | Н   | L  | BA | A10     | NOP <sup>4</sup>                                    |  |  |  |
|                               | L  | L   | L   | Н  | Х  | Х       | Auto-Refresh or Self-Refresh 5                      |  |  |  |
|                               | L  | L   | L   | L  | L  | OP Code | Mode Register Write                                 |  |  |  |
| Row Active                    | Н  | Х   | Х   | Х  | Х  | Х       | NOP                                                 |  |  |  |
|                               | L  | Н   | Н   | Х  | Х  | Х       | NOP                                                 |  |  |  |
|                               | L  | Н   | L   | Н  | BA | CA, A10 | Read                                                |  |  |  |
|                               | L  | Н   | L   | L  | BA | CA, A10 | Write                                               |  |  |  |
|                               | L  | L   | Н   | Н  | BA | RA      | ILLEGAL 2                                           |  |  |  |
|                               | L  | L   | Н   | L  | BA | A10     | Precharge                                           |  |  |  |
|                               | L  | L   | L   | Х  | Х  | Х       | ILLEGAL                                             |  |  |  |
| Read                          | Н  | Х   | Х   | Х  | Х  | Х       | NOP (Continue Row Active after Burst ends)          |  |  |  |
|                               | L  | Н   | Н   | Н  | Х  | Х       | NOP (Continue Row Active after Burst ends)          |  |  |  |
|                               | L  | Н   | Н   | L  | Х  | Х       | Term Burst> Row Active                              |  |  |  |
|                               | L  | Н   | L   | Н  | BA | CA, A10 | Term Burst, start new Burst Read <sup>3</sup>       |  |  |  |
|                               | L  | Н   | L   | L  | BA | CA, A10 | Term Burst, start new Burst Write <sup>3</sup>      |  |  |  |
|                               | L  | L   | Н   | Н  | BA | RA      | ILLEGAL <sup>2</sup>                                |  |  |  |
|                               | L  | L   | Н   | L  | BA | A10     | Term Burst, execute Row Precharge                   |  |  |  |
|                               | L  | L   | L   | Х  | Х  | Х       | ILLEGAL                                             |  |  |  |
| Write                         | Н  | Х   | Х   | Х  | Х  | Х       | NOP (Continue Row Active after Burst ends)          |  |  |  |
|                               | L  | Н   | Н   | Н  | Х  | Х       | NOP (Continue Row Active after Burst ends)          |  |  |  |
|                               | L  | Н   | Н   | L  | Х  | Х       | Term Burst> Row Active                              |  |  |  |
|                               | L  | Н   | L   | Н  | BA | CA, A10 | Term Burst, start new Burst Read <sup>3</sup>       |  |  |  |
|                               | L  | Н   | L   | L  | BA | CA, A10 | Term Burst, start new Burst Write <sup>3</sup>      |  |  |  |
|                               | L  | L   | Н   | Н  | BA | RA      | ILLEGAL 2                                           |  |  |  |
|                               | L  | L   | Н   | L  | BA | A10     | Term Burst, execute Row Precharge <sup>3</sup>      |  |  |  |
|                               | L  | L   | L   | Х  | Х  | Х       | ILLEGAL                                             |  |  |  |
| Read with                     | Н  | Х   | Х   | Х  | Х  | Х       | NOP (Continue Burst to End and enter Row Precharge) |  |  |  |
| Auto                          | L  | Н   | Н   | Н  | Х  | Х       | NOP (Continue Burst to End and enter Row Precharge) |  |  |  |
| Precharge                     | L  | н   | н   | L  | BA | Х       | ILLEGAL <sup>2</sup>                                |  |  |  |
|                               | L  | Н   | L   | Н  | BA | CA, A10 | ILLEGAL <sup>2</sup>                                |  |  |  |
|                               | L  | н   | L   | L  | Х  | Х       | ILLEGAL                                             |  |  |  |
|                               | L  | L   | Н   | Х  | BA | RA, A10 | ILLEGAL <sup>2</sup>                                |  |  |  |
|                               | L  | L   | L   | Х  | Х  | Х       | ILLEGAL                                             |  |  |  |
| Write with                    | Н  | Х   | Х   | Х  | Х  | Х       | NOP (Continue Burst to End and enter Row Precharge) |  |  |  |
| Auto                          | L  | Н   | Н   | Н  | Х  | Х       | NOP (Continue Burst to End and enter Row Precharge) |  |  |  |
| Precharge                     | L  | Н   | Н   | L  | BA | Х       | ILLEGAL <sup>2</sup>                                |  |  |  |
|                               | L  | Н   | L   | Н  | BA | CA, A10 | ILLEGAL <sup>2</sup>                                |  |  |  |

## FUNCTION TRUTH TABLE (Table 1) (1/2)

| Current<br>State <sup>1</sup> | CS    | RAS | CAS | WE | BA | ADDR    | Action                                 |  |  |  |
|-------------------------------|-------|-----|-----|----|----|---------|----------------------------------------|--|--|--|
| Write with                    | L     | Н   | L   | L  | Х  | Х       | ILLEGAL                                |  |  |  |
| Auto                          | L     | L   | Н   | Х  | BA | RA, A10 | ILLEGAL <sup>2</sup>                   |  |  |  |
| Precharge                     | L     | L   | L   | Х  | Х  | Х       | ILLEGAL                                |  |  |  |
| Precharge                     | Н     | Х   | Х   | Х  | Х  | Х       | NOP> Idle after t <sub>RP</sub>        |  |  |  |
|                               | L     | Н   | Н   | Н  | Х  | Х       | NOP> Idle after t <sub>RP</sub>        |  |  |  |
|                               | L     | Н   | Н   | L  | BA | Х       | ILLEGAL <sup>2</sup>                   |  |  |  |
|                               | L     | Н   | L   | Х  | BA | CA      | ILLEGAL <sup>2</sup>                   |  |  |  |
|                               | L     | L   | Н   | Н  | BA | RA      | ILLEGAL <sup>2</sup>                   |  |  |  |
|                               | L     | L   | Н   | L  | BA | A10     | NOP <sup>4</sup>                       |  |  |  |
|                               | L     | L   | L   | Х  | Х  | Х       | ILLEGAL                                |  |  |  |
| Write                         | Н     | Х   | Х   | Х  | Х  | Х       | NOP                                    |  |  |  |
| Recovery                      | L     | Н   | Н   | Н  | Х  | Х       | NOP                                    |  |  |  |
|                               | L     | Н   | Н   | L  | BA | Х       | ILLEGAL <sup>2</sup>                   |  |  |  |
|                               | L     | Н   | L   | Х  | BA | CA      | ILLEGAL <sup>2</sup>                   |  |  |  |
|                               | L     | L   | Н   | Н  | BA | RA      | ILLEGAL <sup>2</sup>                   |  |  |  |
|                               | L     | L   | Н   | L  | BA | A10     | ILLEGAL <sup>2</sup>                   |  |  |  |
|                               | L     | L   | L   | Х  | Х  | Х       | ILLEGAL                                |  |  |  |
| Row Active                    | Н     | Х   | Х   | Х  | Х  | Х       | NOP> Row Active after t <sub>RCD</sub> |  |  |  |
|                               | L     | Н   | Н   | Н  | Х  | Х       | NOP> Row Active after t <sub>RCD</sub> |  |  |  |
|                               | L     | Н   | Н   | L  | BA | Х       | ILLEGAL <sup>2</sup>                   |  |  |  |
|                               | L     | Н   | L   | Х  | BA | CA      | ILLEGAL <sup>2</sup>                   |  |  |  |
|                               | L     | L   | Н   | Н  | BA | RA      | ILLEGAL <sup>2</sup>                   |  |  |  |
|                               | L     | L   | Н   | L  | BA | A10     | ILLEGAL <sup>2</sup>                   |  |  |  |
|                               | L     | L   | L   | Х  | Х  | Х       | ILLEGAL                                |  |  |  |
| Refresh                       | Н     | Х   | Х   | Х  | Х  | Х       | NOP> Idle after t <sub>RC</sub>        |  |  |  |
|                               | L     | Н   | Н   | Х  | Х  | Х       | NOP> Idle after t <sub>RC</sub>        |  |  |  |
|                               | L     | Н   | L   | Х  | Х  | Х       | ILLEGAL                                |  |  |  |
|                               | L     | L   | Н   | Х  | Х  | Х       | ILLEGAL                                |  |  |  |
|                               | L     | L   | L   | Х  | Х  | Х       | ILLEGAL                                |  |  |  |
| Mode                          | Н     | Х   | Х   | Х  | Х  | Х       | NOP                                    |  |  |  |
| Register                      | L     | Н   | Н   | н  | Х  | Х       | NOP                                    |  |  |  |
| A00033                        | L     | Н   | Н   | L  | Х  | Х       | ILLEGAL                                |  |  |  |
|                               | L     | Н   | L   | Х  | Х  | Х       | ILLEGAL                                |  |  |  |
|                               | L     | L   | Х   | Х  | Х  | Х       | ILLEGAL                                |  |  |  |
| ABBREVIA                      | TIONS | 1   |     |    |    |         |                                        |  |  |  |

#### FUNCTION TRUTH TABLE (Table 1) (2/2)

RA = Row AddressBA = Bank Address

CA = Column Address AP = Auto Precharge

NOP = No OPeration command

\*Notes :1. All inputs are enabled when CKE is set high for at least 1 cycle prior to the inputs.

- 2. Illegal to bank in specified state, but may be legal in some cases depending on the state of bank selection.
- 3. Satisfy the timing of  $l_{CCD}$  and  $t_{WR}$  to prevent bus contention.
- 4. NOP to bank precharging or in idle state. Precharges activated bank by BA or A10.
- 5. Illegal if any bank is not idle.

| I UNUTION IN      |        |      | (  | Iunic | -)  |    |      |                                |
|-------------------|--------|------|----|-------|-----|----|------|--------------------------------|
| Current State (n) | CKEn-1 | CKEn | CS | RAS   | CAS | WE | ADDR | Action                         |
| Self Refresh 6    | Н      | Х    | Х  | Х     | Х   | Х  | Х    | INVALID                        |
|                   | L      | Н    | Н  | Х     | Х   | Х  | Х    | Exit Self Refresh> ABI         |
|                   | L      | Н    | L  | Н     | Н   | Н  | Х    | Exit Self Refresh> ABI         |
|                   | L      | Н    | L  | Н     | Н   | L  | Х    | ILLEGAL                        |
|                   | L      | Н    | L  | Н     | L   | Х  | Х    | ILLEGAL                        |
|                   | L      | Н    | L  | L     | Х   | Х  | Х    | ILLEGAL                        |
|                   | L      | L    | Х  | Х     | Х   | Х  | Х    | NOP (Maintain Self Refresh)    |
| Power Down 6      | Н      | Х    | Х  | Х     | Х   | Х  | Х    | INVALID                        |
|                   | L      | Н    | Н  | Х     | Х   | Х  | Х    | Exit Power Down> ABI           |
|                   | L      | Н    | L  | Н     | Н   | Н  | Х    | Exit Power Down> ABI           |
|                   | L      | Н    | L  | Н     | Н   | L  | Х    | ILLEGAL                        |
|                   | L      | Н    | L  | Н     | L   | Х  | Х    | ILLEGAL                        |
|                   | L      | н    | L  | L     | Х   | Х  | Х    | ILLEGAL <sup>6</sup>           |
|                   | L      | L    | Х  | Х     | Х   | Х  | Х    | NOP (Continue power down mode) |
| All Banks Idle 7  | Н      | Н    | Х  | Х     | Х   | Х  | Х    | Refer to Table 1               |
| (ABI)             | Н      | L    | Н  | Х     | Х   | Х  | Х    | Enter Power Down               |
|                   | Н      | L    | L  | Н     | Н   | Н  | Х    | Enter Power Down               |
|                   | Н      | L    | L  | Н     | Н   | L  | Х    | ILLEGAL                        |
|                   | Н      | L    | L  | Н     | L   | Х  | Х    | ILLEGAL                        |
|                   | Н      | L    | L  | L     | Н   | L  | Х    | ILLEGAL                        |
|                   | Н      | L    | L  | L     | L   | Н  | Х    | Enter Self Refresh             |
|                   | Н      | L    | L  | L     | L   | L  | Х    | ILLEGAL                        |
|                   | L      | L    | Х  | Х     | Х   | Х  | Х    | NOP                            |
| Any State Other   | Н      | Н    | Х  | Х     | Х   | Х  | Х    | Refer to Operations in Table 1 |
| than Listed       | Н      | L    | Х  | Х     | Х   | Х  | Х    | Begin Clock Suspend Next Cycle |
| Above             | L      | Н    | Х  | Х     | Х   | Х  | Х    | Enable Clock of Next Cycle     |
|                   | L      | L    | Х  | Х     | Х   | Х  | Х    | Continue Clock Suspension      |

## **FUNCTION TRUTH TABLE for CKE (Table 2)**

\*Notes :6. If the minimum set-up time  $t_{PDE}$  is satisfied when CKE transition from "L" to "H", CKE operates asynchronously so that a command can be input in the same internal clock cycle.

7. Power-down and self-refresh can be entered only when all the banks are in an idle state.



#### PACKAGE DIMENSIONS



Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact ROHM's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).



## **REVISION HISTORY**

| Document         |                | Pa                     | ige                    |                                   |  |  |  |
|------------------|----------------|------------------------|------------------------|-----------------------------------|--|--|--|
| No               | Date           | Previous               | Current                | Description                       |  |  |  |
|                  |                | Edition                | Edition                |                                   |  |  |  |
| FEDD56V62160E-01 | Feb. 4, 2002   | _                      | _                      | First edition                     |  |  |  |
| FEDD56V62160E-02 | Feb. 22, 2002  | 8                      | 8                      | Change tRAS and tRC Specification |  |  |  |
| FEDD56V62160E-03 | Mar. 18, 2002  | 1, 7, 8,<br>15, 24, 25 | 1, 7, 8,<br>15, 24, 25 | Delete "CAS latency =1"           |  |  |  |
| FEDD56V62160E-04 | Oct. 15, 2011  | -                      | -                      | Company name and Logo changed.    |  |  |  |
|                  | Eab 40,0040    | 4                      | _                      | Deleted BLOCK DIAGRAM             |  |  |  |
| FEDD56V62160E-05 | Feb. 13, 2012  | 32                     | _                      | Deleted PACKAGE DIMENSIONS        |  |  |  |
| FEDD56V62160E-06 | May 29, 2012   | 1,5,7,8                | 1,5,7,8                | Deleted Speed rank 7              |  |  |  |
|                  | Nov 19 2012    | 1                      | 1                      | Added package code                |  |  |  |
| FEDD30V02100E-07 | 1100. 10, 2013 | -                      | 31                     | Added PACKAGE DIMENSIONS          |  |  |  |

#### **NOTES**

No copying or reproduction of this document, in part or in whole, is permitted without the consent of LAPIS Semiconductor Co., Ltd.

The content specified herein is subject to change for improvement without notice.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, LAPIS Semiconductor shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other parties. LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Copyright 2002 - 2013 LAPIS Semiconductor Co., Ltd.