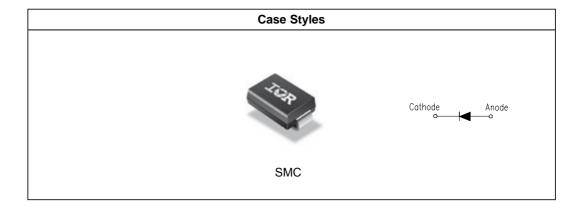
International Rectifier

30BQ100G

SCHOTTKY RECTIFIER

3 Amp

 $I_{F(AV)} = 3.0 Amp$ $V_R = 100 V$


Major Ratings and Characteristics

Characteristics	Values	Units
I _{F(AV)} Rectangular waveform	3.0	А
V _{RRM}	100	V
I _{FSM} @t _p =5µs sine	800	Α
V _F @3.0 Apk, T _J =125°C	0.62	٧
T _J range	- 55 to 175	°C

Description/ Features

The 30BQ100G surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

International Rectifier

Voltage Ratings

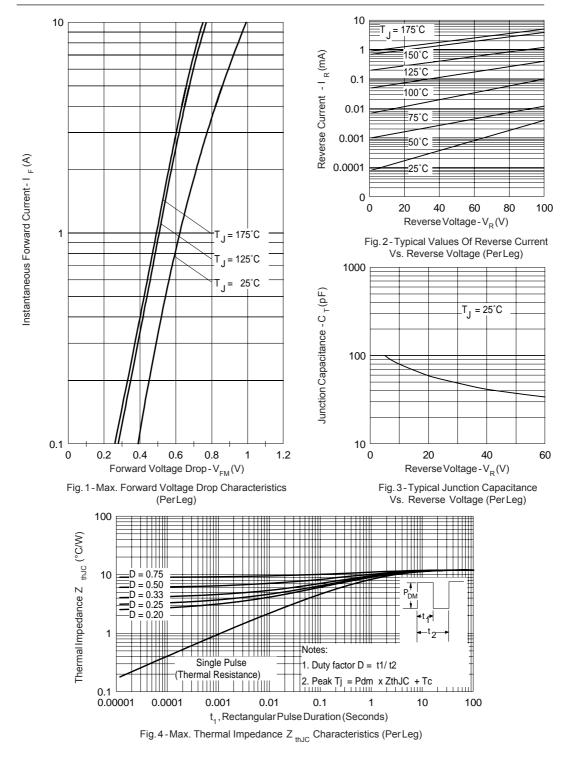
	Part number	30BQ100G
V_R	Max. DC Reverse Voltage (V)	100
V _{RWM} Max. Working Peak Reverse Voltage (V)		

Absolute Maximum Ratings

	Parameters	30BQ	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	3.0	Α	A 50% duty cycle @ T _L = 148 °C, rectangular wave	
		4.0		50% duty cycle @ T _L = 138 °C, r	ectangular wave form
I _{FSM}	Max. Peak One Cycle Non-Repetitive	800	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current	70		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non Repetitive Avalanche Energy	3.0	mJ	T _J =25 °C, I _{AS} =1.0A, 18 μs squa	ire pulse
I _{AR}	Repetitive Avalanche Current	0.5	А	Current decaying linearly to zero in 1 μ sec Frequency limited by $T_{_J}$ max. $Va = 1.5 \text{x} \text{Vr}$ typical	

Electrical Specifications

	Parameters	30BQ	Units	Conditions	
V _{FM}	Max. Forward Voltage Drop (1)	0.79	V	@ 3A	T _J = 25 °C
		0.90	V	@ 6A	
		0.62	V	@ 3A	T _J = 125 °C
		0.70	V	@ 6A	
I _{RM}	Max. Reverse Leakage Current (1)	0.1	mA	T _J = 25 °C	$V_R = \text{rated } V_R$
		5.0	mA	T _J = 125 °C	
C _T	Max. Junction Capacitance	115	pF	V _R = 5V _{DC} (test signal range 100KHz to 1Mhz) 25°C	
L _s	Typical Series Inductance	3.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs	(Rated V _R)	


(1) Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	30BQ	Units	Conditions
T _J	Max.JunctionTemperatureRange (*)	-55 to 175	°C	
T _{stg}	Max. Storage Temperature Range	-55 to 175	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	12	°C/W	DCoperation
R _{thJA}	Max. Thermal Resistance Junction to Ambient	46	°C/W	DCoperation
wt	Approximate Weight	0.24(0.008)	g (oz.)	
	Case Style	SMC		Similar to DO-214AB
	Device Marking	IR3JG		

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth(j-a)}} < \frac{1}{\text{Rth(j-a)}} \quad \text{thermal runaway condition for a diode on its own heatsink}$

^(**) Mounted 1 inch square PCB

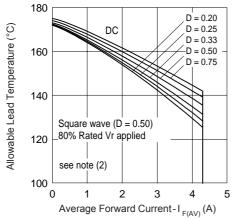


Fig. 4-Maximum Average Forward Current Vs. Allowable Lead Temperature

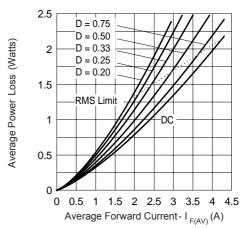
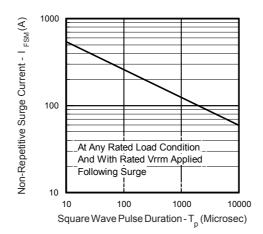
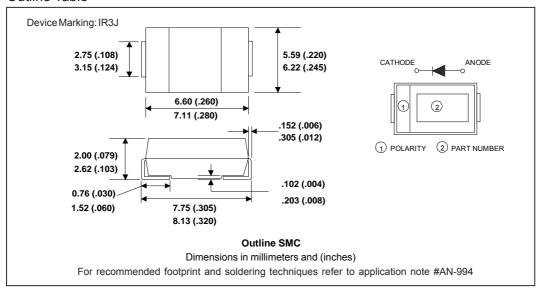
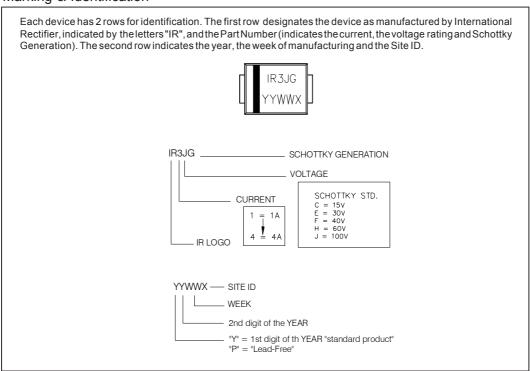


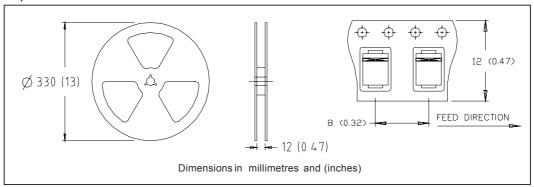
Fig. 5-Maximum Average Forward Dissipation Vs. Average Forward Current

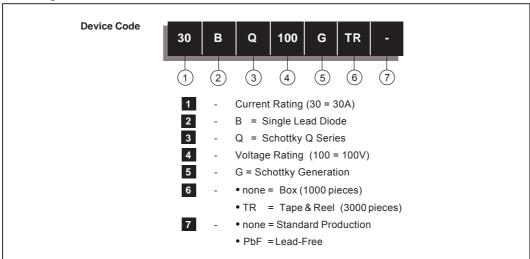

Fig. 6-Maximum Peak Surge Forward Current Vs. Pulse Duration

 $\begin{tabular}{ll} \textbf{(2)} & Formula used: $T_C = T_J - (Pd + Pd_{REV})$ x R_{thJC}; \\ & Pd = Forward Power Loss = $I_{F(AV)}$ x $V_{FM} @ (I_{F(AV)}/D)$ (see Fig. 6); \\ & Pd_{REV} = Inverse Power Loss = V_{R1} x $I_R(1-D)$; $I_R @ V_{R1} = 80\%$ rated V_R (see Fig. 6). \\ \end{tabular}$

Outline Table



Marking & Identification



Bulletin PD-20805 rev. A 01/07

Tape & Reel Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 01/07