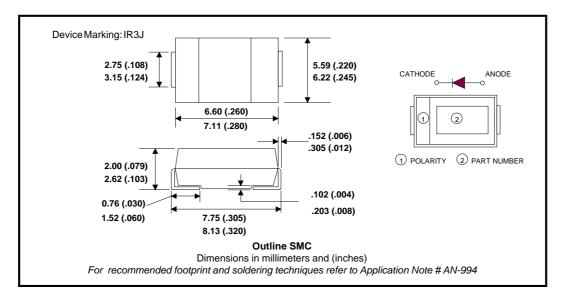
International **ISPR** Rectifier

SCHOTTKY RECTIFIER

30BQ100

3 Amp


Characteristics	30BQ100	Units
I _{F(AV)} Rectangular waveform	3.0	A
V _{RRM}	100	V
I _{FSM} @t _p =5µs sine	2100	А
V _F @ 3.0 Apk, T _J = 125°C	0.62	V
T _J range	- 55 to 175	°C

Major Ratings and Characteristics

Description/Features

The 30BQ100 surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

30BQ100

Bulletin PD-2.441 rev. F 05/02

International **IOR** Rectifier

Voltage Ratings

Part number	30BQ100
V _R Max. DC Reverse Voltage (V)	100
V _{RWM} Max. Working Peak Reverse Voltage (V)	

Absolute Maximum Ratings

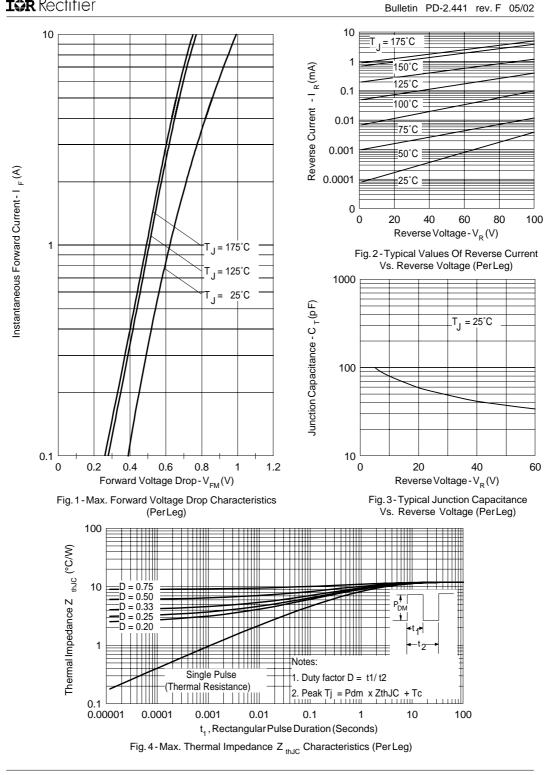
	Parameters	30BQ	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	3.0	А	50% duty cycle @ T _L =148 °C, rectangular wave form	
		4.0		50% duty cycle @ T _L =138°C, r	ectangular waveform
I _{FSM}	Max. Peak One Cycle Non-Repetitive	2100	А	5µs Sine or 3µs Rect. pulse	Following any rated load condition and
	SurgeCurrent	100		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non Repetitive Avalanche Energy	5	mJ	$T_{J} = 25 \text{ °C}, I_{AS} = 2.8A, L = 10 \text{ mH}$	
I _{AR}	Repetitive Avalanche Current	0.3	A	Current decaying linearly to zero Frequency limited by T_J max. V	o in 1 µsec a = 1.5 x Vr typical

Electrical Specifications

	Parameters	30BQ	Units	Conditions	
V _{FM}	Max. Forward Voltage Drop (1)	0.79	V	@ 3A	T _J = 25 °C
		0.90	V	@ 6A	
		0.62	V	@ 3A	T _J = 125 °C
		0.70	V	@ 6A	
I _{RM}	Max. Reverse Leakage Current (1)	0.5	mA	T _J = 25 °C	$V_R = rated V_R$
		5.0	mA	T _J = 125 °C	
C _T	Max. Junction Capacitance	115	pF	$V_R = 5V_{DC}$ (test signal range 100KHz to 1Mhz) 25°C	
Ls	Typical Series Inductance	3.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs	(Rated V _R)	

(1) Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications


	Parameters	30BQ	Units	Conditions
T	Max. Junction Temperature Range (*)	- 55 to 175	°C	
T _{stg}	Max. Storage Temperature Range	- 55 to 175	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	12	°C/W	DCoperation
R _{thJA}	Max. Thermal Resistance Junction to Ambient	46	°C/W	DC operation
wt	Approximate Weight	0.24(0.008)	g(oz.)	
	Case Style	SMC	;	Similar to DO-214AB
	Device Marking	IR3J		

 $\label{eq:alpha} \begin{array}{l} {} (*) \\ \frac{dPtot}{dTj} < \frac{1}{Rth(j\text{-}a)} \end{array} \mbox{ thermal runaway condition for a diode on its own heatsink}$

(**) Mounted 1 inch square PCB

International

30BQ100

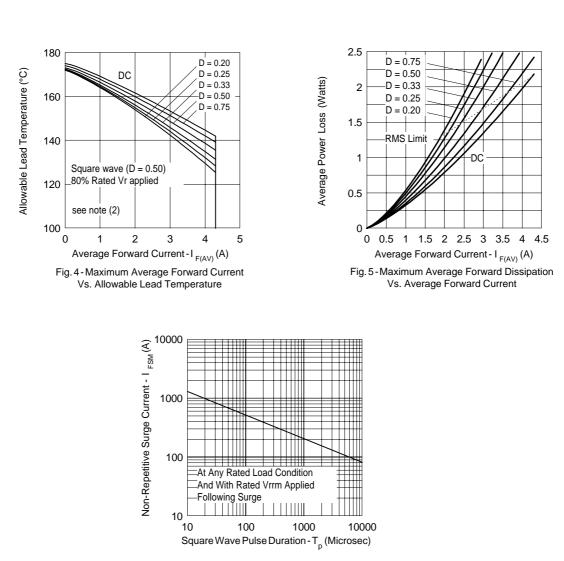
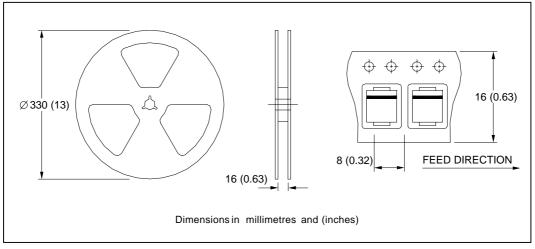


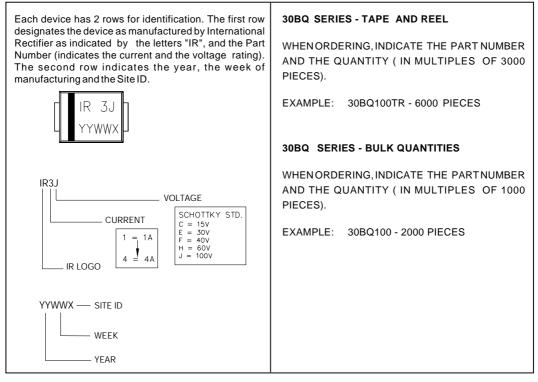
Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration

(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$ (see Fig. 6); $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1 - D); I_R @ V_{R1} = 80\% rated V_R$ International


IR Rectifier

30BQ100

Bulletin PD-2.441 rev. F 05/02


Bulletin PD-2.441 rev. F 05/02

Tape & Reel Information

Marking & Identification

Ordering Information

30BQ100		International
Bulletin PD-2.44	1 rev. F 05/02	ISR Rectifier

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 05/02