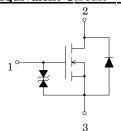
Features

- · Low on-resistance
- · Built-in gate protection diode

Applications

- · Electric power steering
- High current switching

Key Specifications


Package

• $V_{(BR)DSS} = 60V (I_D=100\mu A)$

TO-3P

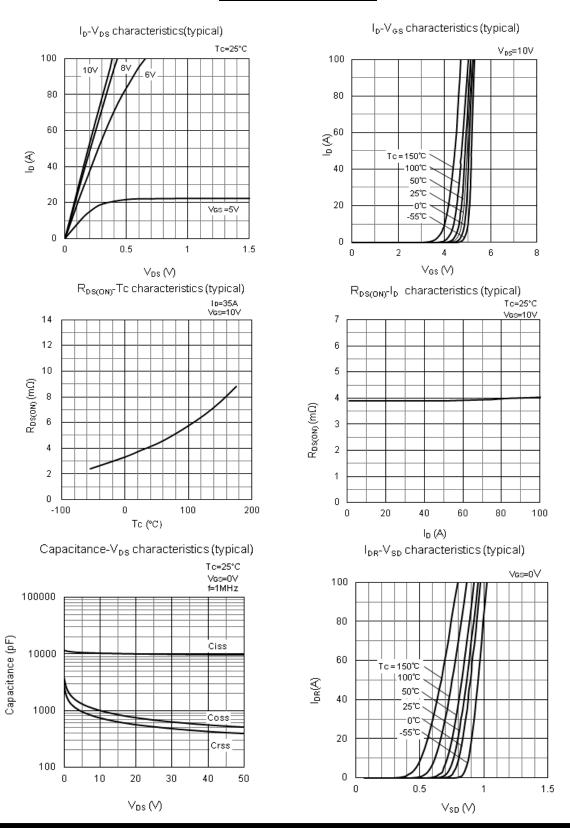
- $R_{DS(ON)} = 4.8 \text{m} \Omega$ max. ($V_{GS}=10\text{V}$, $I_D=35\text{A}$)
- $R_{DS(ON)} = 6.0 \text{m} \Omega$ max. ($V_{GS} = 8V$, $I_D = 35A$)

Absolute maximum ratings

(Ta=25°C)

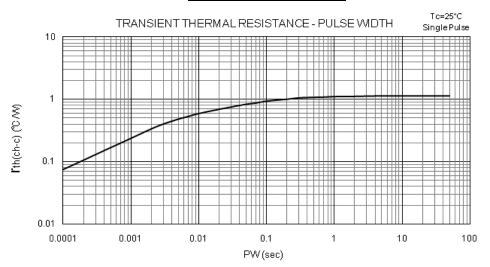
Characteristic	Symbol	Rating	Unit
Drain to Source Voltage	Vdss	60	V
Gate to Source Voltage	Vgss	±20	V
Continuous Drain Current	I_{D}	±100	A
Pulsed Drain Current	I _{D(pulse)} **1	± 200	A
Maximum Power Dissipation	P_D	132 (Tc=25°C)	W
Single Pulse Avalanche Energy	${ m E_{AS}}^{leph_2}$	400	mJ
Channel Temperature	$T_{ m ch}$	175	°C
Storage Temperature	${ m T_{stg}}$	-55 to +175	°C

 $1 \text{ PW} = 100 \mu \text{sec. duty cycle} = 1\%$

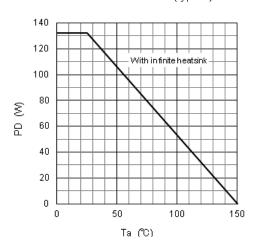

 $2 V_{DD}=20 V$, L=1mH, I_L=20A, unclamped, See Fig.1

Electrical characteristics

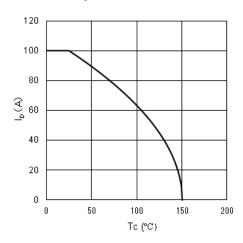
(Ta=25°C)

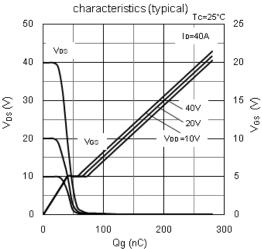

					(,
Characteristic	Symbol	Test Conditions	Limits			
			MIN	TYP	MAX	Unit
Drain to Source breakdown Voltage	V _{(BR)DSS}	ID=100μA,VGS=0V	60			V
Gate to Source Leakage Current	I_{GSS}	VGS=±15V			±10	μΑ
Drain to Source Leakage Current	I_{DSS}	VDS=60V, VGS=0V			100	μΑ
Gate Threshold Voltage	V_{TH}	VDS=10V, ID=1mA	3.25	3.6	3.95	V
Forward Transconductance	Re(yfs)	VDS=10V, ID=35A	30	80		S
Static Drain to Source On-Resistance	R _{DS(ON)}	ID=35A, VGS=10V		3.8	4.8	mΩ
Static Drain to Source On-Resistance	R _{DS(ON)}	ID=35A, VGS=8V		4.2	6.0	mΩ
Input Capacitance	Ciss	VDS=10V VGS=0V f=1MHz	(8250)	10000	(11250)	pF
Output Capacitance	Coss		(800)	1000	(1200)	
Reverse Transfer Capacitance	Crss		(585)	730	(875)	
Turn-On Delay Time	td(on)	$\begin{split} I_D &= 40 A \\ V_{DD} &= 20 V \\ R_G &= 30 \Omega \\ R_L &= 0.5 \Omega \\ V_{GS} &= 10 V \\ See \ Fig. 2 \end{split}$	(120)	160	(200)	ns
Rise Time	tr		(290)	490	(690)	
Turn-Off Delay Time	td(off)		(240)	400	(500)	
Fall Time	tf		(100)	200	(300)	
Source-Drain Diode Forward Voltage	V_{SD}	I _{SD} =50A, V _{GS} =0V		0.9	1.2	V
Source-Drain Diode Reverse Recovery Time	trr	I _{SD} =25A, di/dt=50A/μs		80		ns
Thermal Resistance Junction to Case	Rth(ch-c)				1.13	°C/W
Thermal Resistance Junction to Ambient	Rth(ch-a)				35.71	°C/W

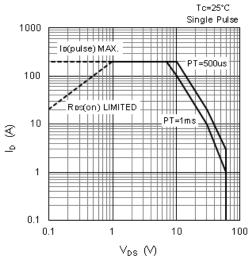
Characteristic Curves



The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.


Characteristic Curves


PD-Ta characteristics (typical)


I_D-Tc characteristics

DYNAMIC INPUT/OUTPUT

SAFE OPARATING AREA

The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.

Characteristic Curves

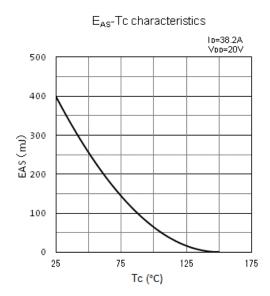


Fig.1 Unclamped Inductive Test Method

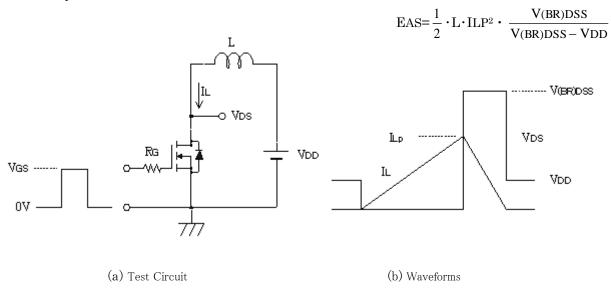
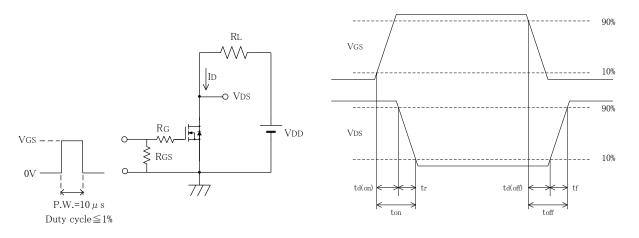
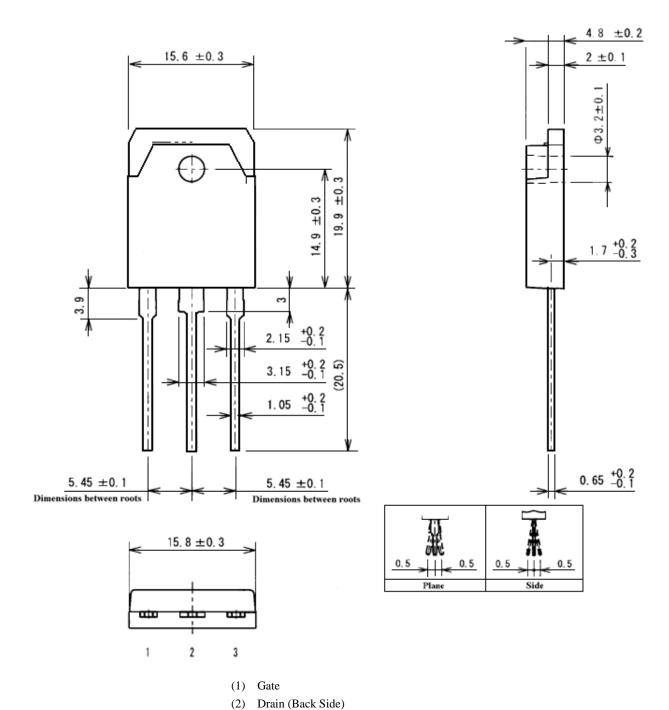



Fig.2 Switching Time Test Method


(a) Test Circuit

(b) Waveforms

Weight Approx. 6g

Outline

TO3P

Source