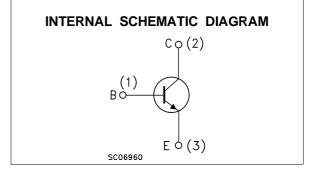

2N2102


EPITAXIAL PLANAR NPN

GENERAL PURPOSE AMPLIFIER AND SWITCH

DESCRIPTION

The 2N2102 is a silicon Planar Epitaxial NPN transistor in Jedec TO-39 metal case. It is intended for a wide variety of small-signall and medium power applications in military and industrial equipments.

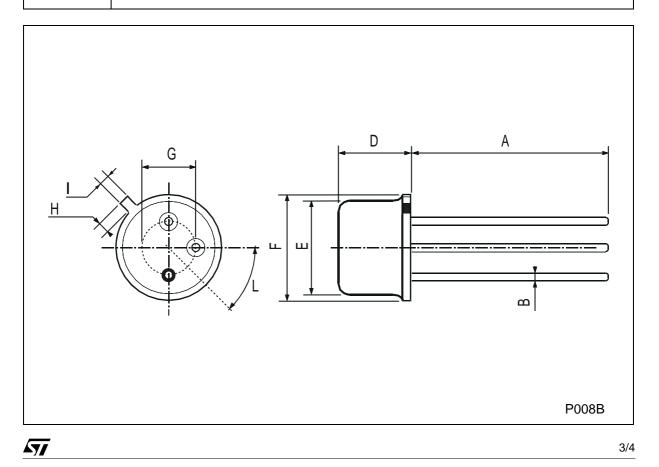
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage $(I_E = 0)$	120	V
Vceo	Collector-Emitter Voltage $(I_B = 0)$	llector-Emitter Voltage (I _B = 0) 65	
V _{CER}	Collector-Emitter Voltage ($R_{BE} \leq 10\Omega$)	80	V
Vebo	Emitter-Base Voltage (I _C = 0)	7	V
lc	Collector Current	1	А
P _{tot}	Total Dissipation at $T_{amb} \le 25 \ ^{\circ}C$	1	W
	at $T_C \le 25 \ ^{\circ}C$	5	W
T _{stg}	Storage Temperature	-65 to 175	°C
Tj	Max. Operating Junction Temperature	175	°C

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-Case	Max	30	°C/W
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	150	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \ ^{\circ}C$ unless otherwise specified)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{СВО}	Collector Cut-off Current (I _E = 0)	$V_{CB} = 60 V$ $V_{CB} = 60 V$ $T_{C} = 150 °C$			2 2	nΑ μΑ
I _{EBO}	Emitter Cut-off Current $(I_C = 0)$	V _{EB} = 5 V			5	nA
V _(BR) cbo	Collector-Base Breakdown Voltage (I _E = 0)	I _C = 100 μA	120			V
$V_{CEO(sus)}*$	Collector-Emitter Sustaining Voltage $(I_B = 0)$	I _C = 30 mA	65			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 150 mA I _B = 15 mA			0.5	V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 150 mA I _B = 15 mA			1.1	V
hFE∗	DC Current Gain		10 20 35 40 25 10		120	
h _{fe} *	High Frequency Current Gain	I _C = 50 mA V _{CE} = 10 V f = 20 MHz		6		
NF	Noise Figure	$ I_{C} = 300 \ \mu A V_{CE} = 10 \ V \ f = 1 \ KHz \\ BW = 1 \ Hz \qquad R_{g} = 510 \ \Omega $			8	dB
C _{CBO}	Collector-Base Capacitance	$I_E = 0$ $V_{CB} = 10$ V $f = 1$ MHz			15	pF
Сево	Emitter-Base Capacitance	$I_{C} = 0$ $V_{EB} = 0.5 V$ $f = 1 MHz$			80	pF

* Pulsed: Pulse duration = 300 μ s, duty cycle \leq 1 %

57

DIM.	mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	12.7			0.500		
В			0.49			0.019
D			6.6			0.260
E			8.5			0.334
F			9.4			0.370
G	5.08			0.200		
Н			1.2			0.047
I			0.9			0.035

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

4/4

