datasheetbank_Logo
전자부품 반도체 검색엔진( 무료 PDF 다운로드 ) - 데이터시트뱅크

LTC2270 데이터 시트보기 (PDF) - Linear Technology

부품명
상세내역
제조사
LTC2270
Linear
Linear Technology 
LTC2270 Datasheet PDF : 36 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
LTC2270
PIN FUNCTIONS
PINS THAT ARE THE SAME FOR ALL DIGITAL
OUTPUT MODES
VDD (Pins 1, 16, 17, 64): Analog Power Supply, 1.7V to
1.9V. Bypass to ground with 0.1μF ceramic capacitors.
Adjacent pins can share a bypass capacitor.
VCM1 (Pin 2): Common Mode Bias Output, nominally equal
to VDD/2. VCM1 should be used to bias the common mode
of the analog inputs to channel 1. Bypass to ground with
a 1μF ceramic capacitor.
GND (Pins 3, 6, 14): ADC Power Ground.
AIN1+ (Pin 4): Channel 1 Positive Differential Analog
Input.
AIN1– (Pin 5): Channel 1 Negative Differential Analog
Input.
REFH (Pins 7, 9): ADC High Reference. See the Applica-
tions Information section for recommended bypassing
circuits for REFH and REFL.
REFL (Pins 8, 10): ADC Low Reference. See the Applica-
tions Information section for recommended bypassing
circuits for REFH and REFL.
PAR/SER (Pin 11): Programming mode selection pin. Con-
nect to ground to enable the serial programming mode.
CS, SCK, SDI, SDO become a serial interface that control
the A/D
parallel
operating modes. Connect
programming mode where
tCoSV,DSDCtKo,
enable the
SDI, SDO
become parallel logic inputs that control a reduced set of
the A/D operating modes. PAR/SER should be connected
directly to ground or VDD and not be driven by a logic signal.
AIN2+ (Pin 12): Channel 2 Positive Differential Analog
Input.
AIN2– (Pin 13): Channel 2 Negative Differential Analog
Input.
VCM2 (Pin 15): Common Mode Bias Output, nominally
equal to VDD/2. VCM2 should be used to bias the common
mode of the analog inputs to channel 2. Bypass to ground
with a 1μF ceramic capacitor.
ENC+ (Pin 18): Encode Input. Conversion starts on the
rising edge.
ENC(Pin 19): Encode Complement Input. Conversion
starts on the falling edge. Tie to GND for single-ended
encode mode.
CS (Pin 20): In serial programming mode, (PAR/SER =
0V), CS is the Serial Interface Chip Select Input. When CS
is low, SCK is enabled for shifting data on SDI into the
mode control registers. In the parallel programming mode
(PAR/SER = VDD), CS controls the clock duty cycle stabilizer
(See Table 2). CS can be driven with 1.8V to 3.3V logic.
SCK (Pin 21): In serial programming mode, (PAR/SER =
0V), SCK is the Serial Interface Clock Input. In the parallel
programming mode (PAR/SER = VDD), SCK controls the
digital output mode. (See Table 2). SCK can be driven with
1.8V to 3.3V logic.
SDI (Pin 22): In serial programming mode, (PAR/SER =
0V), SDI is the Serial Interface Data Input. Data on SDI
is clocked into the mode control registers on the rising
edge of SCK. In the parallel programming mode (PAR/
SER = VDD), SDI can be used together with SDO to power
down the part (see Table 2). SDI can be driven with 1.8V
to 3.3V logic.
OGND (Pin 41): Output Driver Ground. Must be shorted
to the ground plane by a very low inductance path. Use
multiple vias close to the pin.
OVDD (Pin 42): Output Driver Supply. Bypass to ground
with a 0.1μF ceramic capacitor.
SDO (Pin 61): In serial programming mode, (PAR/SER
= 0V), SDO is the optional Serial Interface Data Output.
Data on SDO is read back from the mode control regis-
ters and can be latched on the falling edge of SCK. SDO
is an open-drain NMOS output that requires an external
2k pull-up resistor to 1.8V – 3.3V. If read back from the
mode control registers is not needed, the pull-up resistor
is not necessary and SDO can be left unconnected. In the
parallel programming mode (PAR/SER = VDD), SDO can
be used together with SDI to power down the part (see
Table 2). When used as an input, SDO can be driven with
1.8V to 3.3V logic through a 1k series resistor.
2270f
11

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]